

Product Carbon Footprint Standard Calculation Procedure for Display Industry

2019.03

World Display device Industry Cooperation Committee

Product Carbon Footprint Standard Calculation Procedure for Display Industry

Hao-Jhang Huang¹, Jahau Lewis Chen¹, Li-Hsing Shih², Yi-Lin Wei³, Hui-Chi Liu³ ¹Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan ²Department of Resources Engineering, National Cheng Kung University, Tainan, Taiwan ³CSR&ESH Div. AU Optronics Corp. (AUO), Hsinchu, Taiwan

Abstract

Life Cycle Assessment (LCA) is a powerful tool for distinguishing environmental impacts of different products and is generally recognized as a benchmark for prioritization of company's environmental aspects in products. This customized carbon footprint calculation standard is designed for products related to display industry. There are case studies for a 32inch module and a TV set by using the product carbon footprint calculation standard procedure. Most important of all, the result of the assessment can deal with the consistency, comparability and legitimacy for different products by using this standard and some suggestions are given at the end of this calculation standard.

Content

	bstractI
	ontent
	ist of FiguresIV
L	ist of TablesV
1	Product Carbon Footprint Calculation Standard for a TFT-LCD Module 1
	1.1 Background
	1.2 Goal and Scope
	1.3 System Boundary
	1.4 Life Cycle Assessment of a TFT-LCD Module
	1.4.1 Raw Material Stage 2
	1.4.2 Manufacturing Stage
	1.4.3 Transportation Stage
	1.4.4 Product Carbon Footprint of a TFT-LCD Module
2	
3	Acknowledgements
4	References
5	Emission Factor Database for Display Industry (Appendix A)
	5.1 Foreword
	5.2 Database for Display Industry (for Primary Company)
	5.2.1 Introduction
	5.2.2 Database for Primary Company16
	5.2.3 Summary
	5.3 Database for Display Industry (for Supply Chain Company)
	5.3.1 Introduction
	5.3.2 Database for Supply Chain Company
	5.3.3 Inventory Table for Supply Chain Companies
	5.3.4 Summary
6	Case Study of Standard Calculation Product Carbon Footprint of a TFT
L	CD Module and Related Final Products (Appendix B)
	6.1 Goal and Scope
	6.2 Fundamental Parts of a TFT-LCD Module
	6.3 System Boundaries of a TFT-LCD Module and a TV set
	6.4 TFT-LCD Module Calculation (B2B)
	6.4.1 TFT-LCD Module - Raw Materials Stage
	6.4.2 TFT-LCD Module - Manufacturing Stage

6.4.3TFT-LCD Module - Transportation Stage	63
6.4.4 Summary	80
6.5 TV set Calculation (B2C)	81
6.5.1 TV set - Raw Material Stage	
6.5.2 TV set - Manufacturing Stage	
6.5.3 TV set - Transportation Stage	
6.5.4 TV set - Use stage	
6.5.5 TV set - End-of-Life	85
6.5.6 Conclusion	
6.6 Suggestion	
7 Allocation Methods for IT Products (Appendix C)	
7.1 PCBs	
7.2 PCBA	
7.3 ICs	

List of Figures

Figure 1. System boundary for display industry2
Figure 2. The decision tree for the Tier 2a method from IPCC [1]7
Figure 3. Logistics status of the display industry10
Figure 4. System boundary of the primary company for display industry52
Figure 5. Product carbon footprint of a 32inch TFT-LCD module (B2B)80
Figure 6. Carbon footprint of a 32inch TV - Different Stages Evaluation87

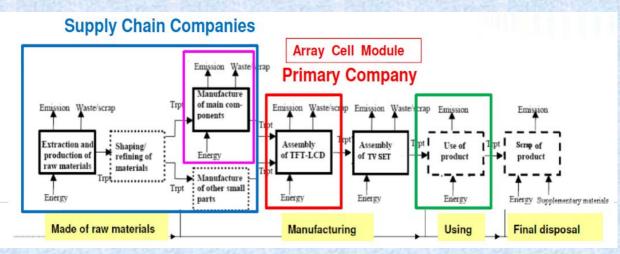
List of Tables

Table 1. Must be calculated in raw material stage
Table 2. Default emission factors for FC emissions from LCD manufacturing
[1]7
Table 3. Definitions of Scope1, Scope2 and Scope3 [3]
Table 4. Product carbon footprint for a TFT-LCD module
Table 5. Standard use stage scenario for TVs [4]
Table 6. Standard use stage scenario for Desktops [4]
Table 7. Standard use stage scenario for Laptops [4] 11
Table 8. Standard use stage scenario for Smart phones [5]
Table 9. Array process emission factor 16
Table 10. Cell process emission factor
Table 11. Color filter process emission factor
Table 12. Module process emission factor 17
Table 13. Package process emission factor
Table 14. Supplementary material emission factor
Table 15. TV set related emission factor
Table 16. Example of classification (Partial list)
Table 17. Example of small sub-category in the primary category
"Electronics"27
Table 18. Metal related emission factor
Table 19. Plastic related emission factor
Table 20. Energy related emission factor
Table 21. Transportation related emission factor 45
Table 22. Inventory table for supply chain companies
Table 23.Name of fundamental parts in both Chinese and English [7]
Table 24. System boundary of a final product (TV set) [8]
Table 25. Carbon footprint of the TFT-LCD module (Raw material stage –
Array, Cell, CF, EE, OM and so on)
Table 26. Carbon footprint of the TFT-LCD module (Raw material stage -
Supplementary material)
Table 27. Carbon footprint of the TFT-LCD module (Raw material stage –
Special gases of supplementary material)
Table 28. Carbon emissions of the TFT-LCD module (Raw material stage –
FCs of supplementary material)61
Table 29. Related data for calculation from other literature [9] 62
Table 30. Standard size for a glass substrate in the G6 manufactory [9]

Table 31. Size for a 32inch module and remaining area 63
Table 32. Carbon footprint of the TFT-LCD module (Manufacturing stage)63
Table 33. Some important purchase status (Randomly choose from real
companies around the world)64
Table 34. Information of transportation mode and corresponding emission
factor
Table 35. Result of transport planning between supply chain companies and
primary companies (LT: Land Transportation, ST: Sea
Transportation)
Table 36. The allocation ratio of each independent transportation mode (LT:
Land Transportation, ST: Sea Transportation)73
Table 37. Carbon footprint of the TFT-LCD module (Transportation stage) (LT:
Land Transportation, ST: Sea Transportation)77
Table 38. Product carbon footprint of the TFT-LCD module
Table 39. Carbon footprint of the TV set- EE (Raw material stage)
Table 40. Carbon footprint of the TV set- MM (Raw material stage) 82
Table 41. Carbon footprint of the TV set (Raw material stage)
Table 42. Standard scenario assumption for different TV's use stage
Table 43. Specification of the TV set (S315XW03 V2)
Table 44. Carbon footprint of the TV set (Use Stage) 85
Table 45. Product carbon footprint of the TV set 86

1 Product Carbon Footprint Calculation Standard for a TFT-LCD Module

1.1 Background


Nowadays, people are surrounded by ICT-related products and there are plenty of research topics arising after another. One of the research topic is product carbon footprint (PCF). PCF is one of the result category from life cycle assessment (LCA), and it can help designer to evaluate how much environmental impact of their product. However, when it comes to comparison of different product in the same level from different companies, there are so many problems, such as using different standards or databases, use stage and end-of-life stage are different from companies or countries, and so on, causing slice differences in results of the assessment from different products.

1.2 Goal and Scope

This product carbon footprint calculation standard is focus on upstream and midstream company of display industry, and the following content will be the necessary parts selected for product carbon footprint calculation for a TFT-LCD module. According to this standard, it can maintain the basic transparency in product carbon calculation and increase the comparability, accuracy and legitimacy between different products. Additionally, there is a database that can be used for the standard calculation, as shown in Appendix A. As a result, the goal of the assessment is to let designers know the difference among different product designs and find the emission hotspots, and deal with the problems in calculation and the result as mentioned above. The scope in the raw material stage is using different BOM from different primary company, and every company should at least provide scope1 and scope2 emissions after the greenhouse gas and reduction and management act.

1.3 System Boundary

Take a TV as a final product for example, the following figure is the typically system boundary for display industry, as shown in Figure 1. Some detailed information will be mentioned below.

1.4 Life Cycle Assessment of a TFT-LCD Module

1.4.1 Raw Material Stage

In raw material stage, a TFT-LCD module is comprised of some basic components and some supplementary materials for different manufacturing process. According to know-how protection of every company and keep the basic transparency of product carbon footprint calculation, the following parts are must be calculated in this stage, as shown in Table 1. Additionally, there are some allocation suggestions for upstream suppliers, as shown in Appendix C.

Process and Chemicals	Material and Components	Greenhouses Gases in GWP100
	Target ITO	
Array	Mo Target	
	Al Target	
	Glass	
	AU Ball	ANT REPORT
	Sealant	TRACE SHOLE
Cell	Power Seal	
	Polarizer	
	Liquid Polyimides	
	Liquid Crystal	
	Glass	and the second second
	ITO	
Color filtor	BM	
Color filter	MVA	
	Color Resist	
	PS	
Alexander and	РСВА	
	Driver IC	
	ACF	
Module	Bezel Front	
	Cushion Bezel Poron	and the second second
	Thermal Pad	
	Plate Shielding	
	Backlight unit	the second second

Table 1. Must be calculated in raw material stage

Table 1. (Continued)						
Process and Chemicals	Material and Components	Greenhouses Gases in GWP100				
	Inverter					
	Plate diffuser					
	Sheet diffuser					
	Sheet DBEF	to an and the				
	Sheet prism	2017 A 1997 2				
	Sheet reflector	New York Contraction				
	Bezel back	Contraction of the second				
	Frame lower					
	Fame upper					
Module	Inverter cover					
Wiodule	Lamp support	the state of the				
	Lamp block (right)					
	Lamp block (left)					
	Таре					
	Label					
	Rubber					
	Screw					
	Connector					
	Cable	1991 San # 10 SF 7				
	CCFL	and the second				
	Aluminum etch					
	EBR					
	Developer					
Till In man	Stripper	the second s				
Supplementary	Nitrogen trifluoride (NF ₃)					
material	Photo resist					
	NMP					
	Oxalic acid					
	Isopropyl alcohol					
	Nitrous oxide(N ₂ O)					

Table 1. (Continued)

Process and Chemicals	Material and Components	Greenhouses Gases in GWP100
	Oxygen	
	Argon	
	Carbon dioxide (CO ₂)	
	Hydrogen	
	Helium gas	And A Street
	Ammonia	
	Chlorine	
	Sulfur hexafluoride (SF ₆)	
	Ethanol	
A DECEMBER OF	Acetone	AND STREET, ST
Supplementary	PH ₃ /H ₂	Strange States
material	Thinner	1999 - C. 21, 1997
	Soda buffer solution	
	Hydrogen peroxide	
	Sodium bisulfite	
	Sodium hypochlorite	
	Sodium hydroxide	
	Polymer	
	Poly aluminum chloride (PAC)	相当に通知の目的
	Calcium chloride	State States
	Sulfuric acid	
	SUM	kgCO ₂ e

Table 1. (Continued)

Note: As for display industry, a TFT-LCD module usually contains the drive circuits (Drive ICs), while a TFT-LCD panel for special customer does not contain the drive circuits.

Speaking of the need to include supplementary materials in the raw material stage, there are some common greenhouse gases that should be aware of the usage, such as carbon dioxide (CO₂) and nitrous oxide (N₂O). Most primary company has their own recycling plan for those common greenhouse gases, as a result, the actual usage of some common greenhouse gases are different from the information in the BOM after the recycling plan from different primary company. Furthermore, some other special gases called fluorinated compounds (FCs), namely nitrogen trifluoride (NF₃) and sulfur hexafluoride (SF₆), are extremely powerful greenhouse gases that IPCC has announced strict emission and recycling regulations on them. Hence, every primary company is obligated for buying special machines to deal with the recycling regulations of special gases, and IPCC has proposed some standard calculation methods to estimate the carbon footprint emissions for those powerful greenhouse gases after special recycling process. However, it is mentioned that principle of protection is considered for every company in the standard calculation procedure. According to using limited information in the BOM to know merely each usage of supplementary material, Tier 2a method followed by the decision tree from IPCC, as shown in Figure 2, is going to be use for estimation of carbon footprint emission in the raw material stage [1]:

$\mathbf{E}_{i} = (1-\mathbf{h})\mathbf{x}\mathbf{F}\mathbf{C}_{i}\mathbf{x}(1-\mathbf{U}_{i})\mathbf{x}(1-\mathbf{a}_{i}\mathbf{x}\mathbf{d}_{i})\mathbf{x}\mathbf{G}\mathbf{W}\mathbf{P}_{i}$

where

 $E_i = emission of gas, kg$

FC_i = consumption of gas i, (e.g., CF₄, C₂F₆, C₄H₆, C₅F₈, CHF₃, NF₃, SF₆)
h = fraction of gas remaining in shipping container (heel) after use, fraction
U_i = use rate of gas i (fraction destroyed or transformed in process), fraction
a_i = fraction of gas i volume used in processes with emission control technologies (company- or plant- specific), fraction

 d_i = fraction of gas i destroyed by the emission control technology, fraction GWP_i = global warming potential value of gas i

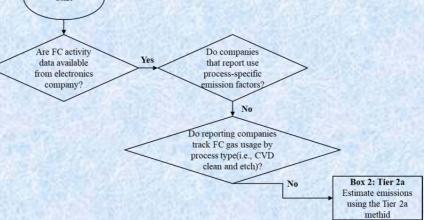


Figure 2. The decision tree for the Tier 2a method from IPCC [1]

Because of the strict regulations of recycling for special machines, there are recycling functions of destruction and recovery efficiency standard parameters for special gases. Different primary company will buy different machines that have different recycling functions from different company for the environmental regulations. However, those machines should all have the basic ability to meet with environmental regulations. To put it another way, the input usage of special gases which vary from different primary company are not real in the BOM, and standard calculation methods which provide default emission factors from IPCC are going to estimate real emissions after special processes from special machines for different primary company, as shown in Table 2.

	Nitrogen trifluoride (NF ₃)	Sulfur hexafluoride (SF ₆)
h	0.1	0.1
Ui	0.8	0.8
ai	0.9	0.9
di	0.95	0.9
GWP	16100	23500

Table 2. Default emission factors for FC emissions from LCD manufacturing [1]

However, new technologies change over time. The basic components and some chemicals in the raw material will vary with new technologies. The parts in the Table 1 is selected from an old module in 2009. As a result, this table for raw material stage may not reflect the reality of a present module. It needs the help form Taiwan TFT LCD Association (TTLA) to let every company in Taiwan to discuss about what new materials and chemicals should be listed over time in raw material stage. Furthermore, every company is obligated to do carbon footprint analysis on new materials or chemicals when there is any new material or chemical being used in the new manufacturing process. If new materials or chemicals have large amount in the manufacturing process or high carbon footprint emission factors, they should list them into raw material stage including the must calculated parts.

1.4.2 Manufacturing Stage

There are three main processes for manufacturing TFT-LCD modules: Array (+Color Filter), Cell, and Module. Typical manufacturers will put the array process and cell process in one facility and perform module assembly in another. The reason is that array process and cell process are technological-intensive processes which means high consumption of electricity power and requirement for different unique chemicals, while module assembly process is a labor-intensive process which assembles other components to fabricate TFT-LCD modules for shipping to the downstream companies, such as manufactory of TVs, cell phones, and so on.

The array and cell facilities take in large pieces of glass, and there are pieces of glass typically cut in the beginning of the module process. The size of the incoming piece of glass is dependent on the generation of the plant and generation refers to each glass size that can be handled within a specific facility. Consequently, the total manufacturing carbon footprint equation for a TFT-LCD module is as follow [2]:

$MCF_{LCDM} (kg CO_2 eq) = [(GHG_F/A_{input}) x (A_{LCDM}+A_{scrap})]$

where

 MCF_{LCDM} = the manufacturing carbon footprint of a single LCD module (kg CO₂ eq) GHG_F = the total manufacturing <u>facility</u> greenhouse gas emission in a year (kgCO₂ eq) eq)

 A_{input} = the total input glass area (for TFT and color filter) brought into the facility in a year (in m²)

 A_{scrap} = the area of glass scrap (will be a function of the generation and display area) *Note.* scrap may not be relevant for module assembly A_{LCDM} = the total area of a specific LCD (in m²)

Besides, the primary company should follow the GHG protocol corporate accounting and reporting standard to perform a GHG emissions inventory. However, it has only to include Scope1 and Scope2 emissions for GHG emissions inventory. Because the range of Scope3 emissions is usually too extensive to include in GHG emissions inventory. In contrast to Scope 1 and Scope2 emissions, they are both clear enough to easily include in GHG emissions inventory for further analysis, as shown in Table 3.

Scope 1	Scope 2	Scope 3
Direct GHG	Electricity indirect GHG	Other indirect GHG
emissions	emissions	emissions

Table 3. Definitions of Scope1, Scope2 and Scope3 [3]

1.4.3 Transportation Stage

According to the peculiarities of display industry mentioned above, the array and cell facilities are in the same place for the reason of technological-intensive processes, and module assembly facilities are in another place for the reason of labor-intensive process, as shown in Figure 3. Due to lower the cost of products, labor-intensive process will often be moved to low-cost countries. In transportation stage, we need to beware of the location of the facility and calculate according to which type of transportation. In addition, it is mandatory for supply chain companies to offer the actual ways of transportation for shipping components or materials to the primary company.

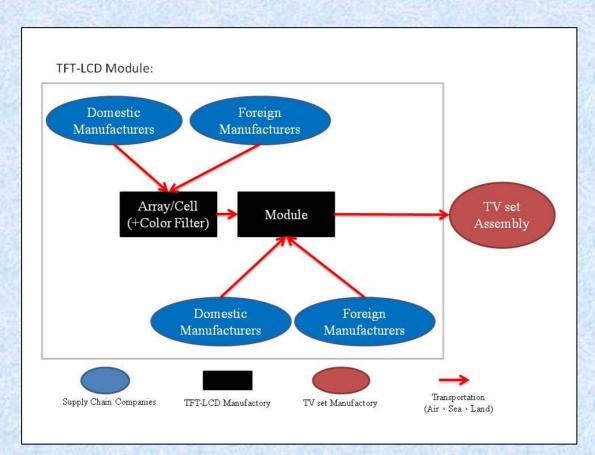


Figure 3. Logistics status of the display industry

1.4.4 Product Carbon Footprint of a TFT-LCD Module

• B2B type : A TFT-LCD module is a B2B product, for example so the product carbon footprint only includes raw material stage, manufacturing and transportation stage. After adding up the result of these three stages, it will be the product carbon footprint of a TFT-LCD module, as shown in Table 4.

A TFT-LCD Raw Module (B2B) material Stage		Manufacturing Stage	Transportation Stage	SUM
	A kg CO ₂ eq	B kg CO ₂ eq	C kg CO ₂ eq	A+B+C kg CO ₂ eq

Table 4. Product carbon footprint for a TFT-LCD module

• B2C type : When a TFT-LCD module, as a raw material, is shipping to the downstream company such as TV manufactory, a TV will become a B2C product and there is a standard scenario for use stage calculation, as shown in Table 5. Additionally, there is a case study of a TV, as shown in Appendix B. Furthermore, there are still many products related to modules and there are standard scenarios collected from public researches or statistics for use stage, as shown in Table 6 to Table 8.

Table 5. Standard use stage scenario for TVs [4]

TV use	On mode	Stand-by	Off mode	Use day per	Life
stage	(hours/day)	mode	(hours/day)	year	time
standard		(hours/day)		(days/year)	(years)
scenario	4	20	0	365	6.6

Desktop use stage standard	Туре	On mode (hours/day)	Stand-by mode (hours/day)	Off mode (hours/day)	Use day per year (days/year)	Life time (years)
scenario	Home	4	8	12	365	6.6
	Office	6	9	9	365	6.6

Table 6. Standard use stage scenario for Desktops [4]

Table 7. Standard use stage scenario for Laptops [4]

	Laptop	Туре	On mode	Stand-by	Off mode	Use day	Life
	use stage		(hours/day)	mode	(hours/day)	per year	time
1	standard			(hours/day)		(days/year)	(years)
þ	scenario	Home	4	8	12	365	5.6
	ča.	Office	7	8	9	365	5.6

Smart phones use stage	On mode (hours/day)	Stand-by mode (hours/day)	Off mode (hours/day)	Use day per year (days/year)	Life time (years)
standard scenario	5	19	0	365	4.7

 Table 8. Standard use stage scenario for Smart phones [5]

2 Conclusion

In this product carbon footprint standard calculation procedure, there are two following suggestions. First, there is a selection problem in raw material stage. Due to ICT-related product changing rapidly, the processes and materials will change accordingly, such as the present type of backlight in the TFT-LCD module is LED, not CCFL. Besides, there are different types of LCD module for final products. This standard calculation procedure used the dominant module, TFT-LCD module, to be the main content. Therefore, this standard should be changing rapidly for reality by TTLA, and there should be another analysis to discuss about different type of LCD module. Second, there are lots of ICT-related products for TFT-LCD modules, such as cell phones, tablets, laptops and so on, which have different use stage scenarios and end-of-life scenarios. Hence, each of ICT-related product for use stage scenario calculation should be unified separately and every company should design for their end-of-life strategies for their product in order to cater to reality. In the future, this standard will promote product carbon footprint calculation automatically.

3 Acknowledgements

This research is sponsored by the Ministry of Science and Technology, Taiwan, R.O.C under Grand no. MOST 106-2621-M-006-004 and thanks to the support from the Taiwan TFT LCD Association (TTLA).

4 References

- [1] Intergovernmental Panel on Climate Change (IPCC), "Guidelines for National Greenhouse Gas Inventories Volume 3: Industrial Processes and Product Use -Chapter 6. Electronics Industry Emissions", 2006, Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/3_Volume3/V3_6_Ch6_Electro nics_Industry.pdf
- [2] Electronic Industry Citizenship Coalition (EICC), Project Carbon Footprinting Allocation Project Results "Standardizing Methods for Performing Allocation of Supplier Carbon Data for IT Products", June 2014, Retrieved from http://www.csrwire.com/reports/1358-Standardizing-Methods-for-Performing-Allo cation-of-Supplier-Carbon-Data-for-IT-Products
- [3] Greenhouse Gas Protocol, "A Corporate Accounting and Reporting Standard (Revised Edition)", 2015, Retrieved from http://www.ghgprotocol.org/corporate-standard
- [4] European Commission DG TREN (Preparatory studies for Eco-design Requirements of EuPs), "Lot3 Personal Computers (desktops and laptops) and Computer Monitors Final Report (Task 1-8)", July 2005, Retrieved from http://extra.ivf.se/ecocomputer/downloads/Eup%20Lot%203%20Final%20Report %20070913%20published.pdf
- [5] Tina Lu, "Almost Half of Smartphones Users Spend More Than 5 Hours A Day on Their Mobile Device", October 2017, Retrieved from https://www.counterpointresearch.com/almost-half-of-smartphone-users-spend-mo re-than-5-hours-a-day-on-their-mobile-device/
- [6] Greenhouse Gas Protocol, "Global Warming Potential Values", February 2016, Retrieved from http://www.ipcc.ch
- [7] AU Optronics Corporation (AUO), 2007, Retrieved from https://www.auo.com/zh-TW
- [8] AU Optronics Corporation (AUO), "Product-Category Rules (PCR) for Preparing an Environmental Product Declaration (EPD) for TFT-LCD Televisions", PCR Library, 2008, Retrieved from

http://pcr-library.edf.org.tw/product_country/taiwan.asp

- [9] Pan, P.-W., "Analysis of Greenhouse Gas Emissions from TFT-LCD Process in Executive Master of Environmental Engineering", 2009, National Central University, Taiwan.
- [10] Evergreen Marine Corp. (Taiwan), "Container Specifications", Retrieved from https://www.evergreen-marine.com/tw/tei1/jsp/TEI1_Containers.jsp

[11] Environmental Protection Administration Executive Yuan, R.O.C.(Taiwan)
 Website: Environment Resource Database (Institute of Transportation, MOTC),
 Retrieved from
 https://erdb.epa.gov.tw/DataRepository/Other/Carbon_Footprint_Emission_Factor.aspx

5 Emission Factor Database for Display Industry (Appendix A)5.1 Foreword

Manufacturing LCD modules require a lot of materials from supply chain company for complex processes. If primary company want to calculate product carbon footprint for LCD modules, it is often to find emission factor from different databases or LCA software for different material. However, most of databases and LCA software are well-developed in Europe but supply chain companies for display industry are located in Asia such as Taiwan, Japan, Korean, and China. Therefore, it is always a big problem to find the corresponding emission data in those databases and LCA software from Europe. For this reason, there is another aim, emission factor database for display industry, as important as the carbon footprint standard calculation. This reference database for display industry is organized from present companies who has completed their own product carbon footprint assessment for their products in 2009. If some primary companies who don't have emission factor from supply chain companies want to calculate their product carbon footprint for their own LCD module, this database can be used for their calculation.

5.2 Database for Display Industry (for Primary Company)

5.2.1 Introduction

This database is classified into six tables according to the peculiarities for display industry, as shown in Table 9 to Table 14, including Array Process, Cell Process, Color Filter Process, Module Process, Package and Supplementary Materials, respectively. Primary companies can choose emission factors of related parts from their own LCD module design to calculate carbon footprint of their LCD module in raw material stage. Furthermore, most of the data are from a Taiwanese company who has done their inventory analysis and some of the data source are from some databases such as Ecoinvent, ETH-ESU96, and IDEMAT2001, or LCA software such as Simapro7.1.

If LCD modules offer to the downstream company like TV set manufactory, there are also related database for carbon footprint of TV set in raw material stage that can be used, as shown in Table 15.

5.2.2 Database for Primary Company

Table 9. Array process emission factor

Process	Parts	Emission Factor (kgCO2eq/kg)
a mine a state of the	Target ITO	119.11
	Mo target	10.16
Array	Al target	2.53
Completion State	Glass	4.40

Table 10. Cell process emission factor

Process	Parts	Emission Factor (kgCO2eq/kg)
The state	AU ball	6687.50
LAN AND A	Sealant Sealant	5.31
Call	Power seal	2.70
Cell	Polarizer	55.89
	Liquid polyimide	22.67
	Liquid crystal	2.02

Table 11. Color filter process emission factor

Process	Parts	Emission Factor (kgCO2eq/kg)
	Glass	4.40
	ITO	85.61
Color filtor	BM	2.17
Color filter	MVA	5.05
	Color resist	3.03
	PS	0.66

Table 12. Module process emission factor

Process	Parts	Emission Factor (kgCO2eq/kg)
	PCBA	228.57
	Driver IC	1990.63
Module	ACF	60.14
12200	Bezel front	4.16
	Таре	7.65

Table 12	. (Continu	ued)
I HOIC II	· (Continu	ucu)

Process	Parts	Emission Factor (kgCO2eq/kg)	
	Cushion bezel poron	170.00	
	Thermal pad	5.13	
	Plate shielding	38.62	
	Screw	88.75	
	Backlight unit	Lack of data	
	Inverter	300.63	
	Plate diffuser	10.85	
Mahl	Sheet diffuser	2.71	
Module	Sheet DBEF	2.59	
	Sheet prism	7.34	
1 1 1 1 1 1 1 1 1 1	Sheet reflector	11.00	
	Bezel back	3.63	
	Frame lower	9.45	
	Fame upper	9.59	
	Inverter cover	11.67	
	Lamp support	14.66	

Process	Parts	Emission Factor (kgCO2eq/kg)
	Lamp block (right)	8.75
	Lamp block (left)	8.75
Madula	Label	14.70
Module	Rubber	20.38
	Connector	172.09
	Cable	332.50

Table 12. (Continued)

Process	Parts	Emission Factor (kgCO2eq/kg)
STREET N	Label	13.40
	Film protect	2.75
	Crepe paper tape	1.24
Package	Bag anti-static	2.14
	Cushion packing	0.31
Contraction of the	Packing carton	0.32
ALL CONTRACTOR	OPP	Lack of data

Table 13. Package process emission factor

Table 14. Supplementary material emission factor

and the second states of the second	Parts	Emission Factor (kgCO2eq/kg)
	Aluminum etch	1.60
	EBR	2.05
Supplementary meterial	Developer	0.06
Supplementary material	Stripper	2.61
	Nitrogen trifluoride (NF ₃)	16100 [6]
	Photo resist	1.36
	NMP	Lack of data

	Parts	Emission Factor (kgCO ₂ eq/kg)	
	Oxalic acid	Lack of data	
	Isopropyl alcohol	3.19	
	Nitrous oxide (N ₂ O)	265 [6]	
	Oxygen	0.41	
	Argon	0.31	
	Carbon dioxide	1 [6]	
	Hydrogen	1.66	
Supplementary material	Helium gas	0.93	
	Ammonia	2.12	
	Chlorine	0.88	
State of the second second	Sulfur hexafluoride (SF ₆)	23500 [6]	
	Ethanol	0.33	
	Acetone	2.22	
	PH ₃ /H ₂	1.66	
	Photo resist	3.25	
	Thinner	3.55	

Table 14. (Continued)

	Table 14. (Continued)	
	Parts	Emission Factor (kgCO2eq/kg)
	Soda buffer solution	1.22
	Hydrogen peroxide	1.21
	Sodium bisulfite	Lack of data
	Sodium hypochlorite 0.92	
Supplementary material	Sodium hydroxide	1.24
	Sulfuric acid	0.14
	Polymer	Lack of data
	Calcium chloride	0.89
	Hydrogen Peroxide	1.21
	Poly aluminum chloride (PAC)	Lack of data

	Category	Parts	Emission Factor (kgCO2eq/kg)	
	中国市场的法学和学生中国市场	Plastic cover	3.87	
	Base assembly	PE bag	2.12	
		Rubber	241.48	
	FT 最高级的公共 1	Cover rear plastic	4.48	
		Tape anti-noise	Lack of data	
	Cover rear assembly	Sponge left	16.25	
		Sponge right	2.93	
TV set		Rubber	2.28	
I V Set	Bezel Front assembly	Bracket	9.48	
		Film protect	2.53	
15 A		Bezel plastic	3.87	
		Plastic cover	86.00	
		Tape anti-noise	9.50	
		Rubber	2.28	
		Nut	5.51	
	Others	Neck set	3.28	
Server Fr		BOX	33.55	

Table 15. TV set related emission factor

Table 13: (Continued)				
	Category	Parts	Emission Factor (kgCO ₂ eq/kg)	
		Plastic cover	14.71	
	Cherry and the second	Fix tape	2.28	
	Others	Screw	104.93	
		Cable Assembly	100.84	
1.00		Bracket	1.87	
TTA		Bag	2.02	
TV set	A Restriction	Таре	0.23	
		Carton	0.33	
	Destaura	Product label	2.10	
Package	Раскаде	Characteristic label	981.40	
		Other label	690.70	
		Serial number label	0.30	
		Cushion packing	Lack of data	

Table 15. (Continued)

5.2.3 Summary

In this database, there are some parts that still don't have emission factors and some of the data is no longer be used in display industry, such as CCFL due to the ICT-related materials changing rapidly. The type of backlight unit, LED, is substituted for CCFL in present display industry. Therefore, it is important to update this database from different display industry. This database can not only help primary company calculate their product carbon footprint about their design but push their supply chain company to do the inventory analysis. In the future, this database is going to be completed and the further level is to let every company have a related reference to compare their product with others.

5.3 Database for Display Industry (for Supply Chain Company)

5.3.1 Introduction

As for the supply chain companies, there is another database which is chosen from Ecoinvent because it was one of the most popular database and widely used in the world. However, the data of electricity from Taiwan, China, Japan, Korea and global world in Ecoinvent are replaced in this standard database. For fuel of energy item, we replaced the data in Ecoinvent by the inventory results of companies in display industry. The database of carbon footprint emission factor is proposed to classify into 4 different level of classification, such as primary category, secondary category, minor category, and small sub-category. There are 12 items in primary category, such as Metal, Plastic, Chemical, Paper, Wood, Glass, Ceramic, Grease, Electronics, Energy, Transportation, and Waste, as shown in Table 16, and some items are only have classified into primary category "Electronics", as shown in Table 17.

Primary	Secondary	Minon Cotogom	Small
Category	Category	Minor Category	Sub-Category
		Cold-rolled steel plate	
ALC: NOT	Ferro	Electrogalvanized steel plate	
	Teno	Galvanized steel plate	
Metal		Iron	AND I WARD
Wietai	the second	Aluminium (Al)	
	Non-Ferro	Cadmium (Cd)	
C AUGOR	Non-remo	Chromium (Cr)	40-58 (NE) 47058
		Copper (Cu)	
	Plastic	ABS	
		(Acrylonitrile-Butadiene-St	PENO SECURI
Plastic		yrene)	
1 lastic		PE(Polyethylene)	
10 10 10 10 A		LDPE (Low density	
		polyethylene)	
G G T Z A	Magnesium	Ver see bus a ver	COLOGICA V
Chemical	oxide		
Chemical	Manganese		
	oxide		
Paper	Paper		
Wood			
Glass	Glass	Glass	
Ceramic	a Carroll		
Grease			

Table 16.	Example of	classification	(Partial list)
-----------	-------------------	----------------	----------------

Primary Category	SecondaryCategory	Minor Category	Small Sub-Category	
Electronics	Chip Resistor	Metal	Lead(Pb,Plumbum)	
Energy	Electricity			
Energy	Gasoline&Petrol			
Transportation	Aircraft			
Transportation	Truck,Lorry			
Waste	Recycling			
vv aste	Landfill			

Table 16. (Continued)

Table 17. Example of small sub-category in the primary category "Electronics"

Primary Category	Secondary Category	Minor Category	Small Cub-Category
	Chip Resistor		
		Resistor	
	Grand Land	Metal	
Electronics		1.0.0	Lead(Pb,Plumbum)
	TR SALES	Ser C. The State	Silver(Ag)
			Nickel(Ni)
	121		Tin(Sn,Stannum)
			Palladium(Pd)

5.3.2 Database for Supply Chain Company

The following four tables are most relevant to display industry, as shown in Table 18, Table 19, Table 20 and Table 21. In the table, "Primary Category" is the highest level in the classification rule, "Secondary Category" is the lower level than "Primary Category", "ID" is the ID code of the Ecoinvent, "Name in Ecoinvent V2.2" is the related name in the Ecoinvent V2.2, "Unit" is the unit for produce carbon footprint, such as kg, m^2 , or m^3 , and "Emission Factor" is the numerical value of unit of equivalent carbon emission per substance (such as kgCO₂eq/kg).

Primary Category – Metal						
Secondary Category Minor Category ID Name in EcoinventV2.2				Unit	Emission Factor	
	Cold-rolled steel plate	*	steel sheet, cold rolled	kg	2.124	
AND STREET	Electrogalvanized steel plate		**	3-6		
Helense and	Ferrochrome(Ferrochromium)	1095	Ferrochromium, high-carbon, 68% Cr, at	kg	1.91	
			plant/GLO U			
	Ferromanganese	1097	ferromanganese, high-coal, 74.5% Mn, at	kg	0.973	
Ferro			regional storage/RER U	1.2		
	Ferronickel	1098	Ferronickel, 25% Ni, at plant/GLO U	kg	9.23	
STATISTICS IN AN	Ferrosilicon	*		kg	6.5455	
	Galvanized steel plate		Galvanized steel sheet, at plant/RNA	kg	2.71	
	Hot-rolled steel plate		Hot rolled sheet, steel, at plant/RNA	kg	2.3	
Service and the	Iron	1069	Cast iron, at plant/RER U	kg	1.48	

Table 18. Metal related emission factor

			e 18. (Continued)		
Secondary Category	Minor Category	ID	y Category – Metal Name in EcoinventV2.2	Unit	Emission Factor
	Non-electroplated steel		**		
Ferro	Painted steel plate	*		kg	2.309
Fello	Stainless steel plate	*		kg	1.8393
	Ferrite	7090	Ferrite, at plant/GLO U	kg	1.49
	Aluminium	1054	Aluminum, primary, at plant/RER U	kg	12.2
	Cadmium	7163	Cadmium, primary, at plant/GLO U	kg	0.8
	Chromium	1073	Chromium, at regional storage/RER U	kg	26.7
and the second	Copper	1088	Copper, primary, at refinery/RAS U	kg	4.75
Non-Ferro	Brass	1066	Brass, at plant/CH U	kg	2.45
	Bronze	1068	Bronze, at plant/CH U	kg	2.77
	Lead(Pb,Plumbum)	10777	Lead, primary, at plant/GLO U	kg	2.11
		10150	Lead, secondary, at plant/RER U	kg	0.652

T 11 10 (C

1

Table 18. (Continued)								
	Primary Category – Metal							
Secondary Category	Minor Category ID Name in EconyentV2 2		Unit	Emission Factor				
	Magnesium (Mg)	1106	Magnesium, at plant/RER U	kg	73.7			
	Nickel (Ni)	1121	nickel, 99.5%, at plant/GLO U	kg	10.8			
	Niobium (Nb)		**		Hele			
	Tin-plated steel plate	7125	tin plated chromium steel sheet, 2 mm, at plant/RER U	m ²	82.2			
Non-Ferro	Tin (Sn,Stannum)	1155	tin, at regional storage/RER U	kg	17.1			
	Titanium (Ti)	*		kg	45.0918			
	Solder	1148	Soft solder, Sn97Cu3, at plant/RER U	kg	15.9			
		10782	Solder, bar, Sn63Pb37, for electronics industry, at plant/GLO U	kg	11.4			
		10784	Solder, bar, Sn95.5Ag3.9Cu0.6, for electronics industry, at plant/GLO U	kg	20.5			

Table 18. (Continued)

	Primary Category – Metal								
Secondary Category	Minor Category	ID	Name in EcoinventV2.2	Unit	Emission Factor				
		10783	Solder, paste, Sn63Pb37, for electronics industry, at plant/GLO U	kg	17.2				
		10785	Solder, paste, Sn95.5Ag3.9Cu0.6, for electronics industry, at plant/GLO U	kg	26.3				
		1067	Brazing solder, cadmium free, at plant/RER U	kg	2.58				
	Zinc (Zn)	1156	Zinc, primary, at regional storage/RER U	kg	3.38				
Non-Ferro	Silver (Ag)	10153	Silver, at regional storage/RER U	kg	100				
	Gold (Au)	10121	Gold, at regional storage/RER U	kg	13100				
	Cobalt (Co)	5836	Cobalt, at plant/GLO U	kg	8.27				
	Palladium (Pd)	1127	Palladium, at regional storage/RER U	kg	9720				
		1129	Palladium, primary, at refinery/RU U	kg	9720				
		1128	Palladium, primary, at refinery/ZA U	kg	10600				
Service States		1130	Palladium, secondary, at refinery/RER U	kg	758				

	Primary Category – Metal							
Secondary Category	Minor Category	ID	Name in EcoinventV2.2	Unit	Emission Factor			
	Manganese (Mn)	1109	Manganese, at regional storage/RER U	kg	2.59			
	Platinum (Pt)	1133	Platinum, at regional storage/RER U	kg	14800			
	12.5	1135	Platinum, primary, at refinery/RU U	kg	14500			
		1134	Platinum, primary, at refinery/ZA U	kg	15800			
	Gallium (Ga)	6908	Gallium, semiconductor-grade, at plant/GLO U	kg	205			
		6909	Gallium, semiconductor-grade, at regional	kg	210			
Non-Ferro			storage/RER U					
	Mercury (Hg)	1111	Mercury, liquid, at plant/GLO U	kg	12.1			
	Silicon (Si)	*		kg	5.4321			
	Molybdenum (Mo)	1116	Molybdenum, at regional storage/RER U	kg	7.61			
	Galvanized steel plate		Galvanized steel sheet, at plant/RNA	kg	2.71			
Latter and	Arsenic (As)		**		1			
	Barium (Ba)	5	**					

Table 18. (Continued)

Primary Category – Metal							
Secondary Category	Minor Category	ID	Name in EcoinventV2.2	Unit	Emission Factor		
	Antimony (Sb)	11162	Antimony, at refinery/CN U	kg	12.9		
	Selenium (Se)	Par and	**		the second second		
Non Ferro	Vanadium (V)	1200	**	23.65			
Non-Ferro	Tungsten (W)		**				
	Calcium (Ca)		**				
	Strontium (Sr)		**	P. Ch			

Note. Table 18: * is not from Ecoinvent V2.2; ** is related data in the category but there is no corresponding information for emission factor.

The seals	Primary Category - Plastic							
Secondary Category	Minor Category ID Name in EcoinventV2.2		Unit	Emission Factor				
	ABS (Acrylonitrile-Butadiene-Styrene)	1817	Acrylonitrile-butadiene-styrene copolymer, ABS, at plant/RER U	kg	4.39			
	Acrylic		**	1.0				
	AS (Styrene-Acrylonitrile, SAN)	1846	styrene-acrylonitrile copolymer, SAN, at plant	kg	4.06			
	Epoxy (or Epoxy Resin)		Liquid epoxy resins E	kg	8.25			
Plastic	Foam polystyrene		Expandable polystyrene (EPS) E	kg	3.38			
	Hard urethane	1839	Polyurethane, rigid foam, at plant/RER U	kg	4.31			
	Soft urethane	1838	Polyurethane, flexible foam, at plant/RER U	kg	4.84			
	Urethane	*		kg	4.575			
	PS (Polystyrene)		General purpose polystyrene, at plant/RNA	kg	2.7			
	PS-H	1837	Polystyrene, high impact, HIPS, at plant/RER U	kg	3.5			

Table 19. Plastic related emission factor

	Table 19. (Continued) Primary Category - Plastic							
Secondary Category			Name in EcoinventV2.2	Unit	Emission Factor			
	PE (Polyethylene)	1820	fleece, polyethylene, at plant	kg	2.86			
	LDPE (Low Density Polyethylene)	1830	polyethylene, LDPE, granulate, at plant/RER U	kg	2.1			
	LLDPE (Linear Low Density Polyethylene)		polyethylene, LLDPE, granulate, at plant/RER U	kg	1.85			
	HDPE (High Density Polyethylene)	1829	polyethylene, HDPE, granulate, at plant/RER U	kg	1.93			
Plastic	PA6 (Polyamide 6)	1821	Nylon 6, at plant/RER U	kg	9.27			
	PA12 (Polyamide 12)	11-1	**		o presentes			
	PA66 (Polyamide 66)	4.52	Nylon 66, at plant/RER U	kg	8.01			
7	PC(Polycarbonate)	1826	polycarbonate, at plant/RER U	kg	7.78			
	PC-ABS	**		kg	6.085			
1	PBT (Polybutylene Terephthalate)		**					

Table 19. (Continued)

Contraction of the		Table						
Primary Category - Plastic								
Secondary Category	Minor Category ID Name in EconyentV2 2		Unit	Emission Factor				
	PET (Polyethylene Terephthalate)		Polyethylene terephthalate (PET) granulate, production mix, at plant, amorphous RER	kg	3.27			
	PMMA (Acrylic resin, Polymethyl Methacrylate)		Polymethyl methacrylate(PMMA)beads, production mix, at plant RER	kg	7.05			
	Polyoximethylene	I.S.S.	**	120				
	POM (Polyfounoldehyde		**					
Plastic	ResinPolyox Mothylene Resin)							
	PP(Polypropylene)	1834	Polypropylene, granulate, at plant/RER U	kg	1.97			
	PPE(Polyphenylene)		**					
	PVC (Polyvinyl Chloride or PolyvinylChloride)	1840	Polyvinylchloride, at regional storage/RER U	kg	2.01			
	SBR (Styrene Butdiene Rubber)	1847	Synthetic rubber, at plant/RER U	kg	2.65			
	Polyphenylene sulfide(PPS)	11123	Polyphenylene sulfide, at plant/GLO U	kg	5.55			

Table 19. (Continued)

*Note. Table 19: * is not from Ecoinvent V2.2; ** is related data but there is no corresponding information.*

	Р	rimary Category - Energy	ES aleg	
Secondary Category	ID	Name in EcoinventV2.2	Unit	Emission Factor
	*	Electricity, Taiwan	KWH	0.612
sand in the "Second Sector"	*	Electricity, China, Huabei	KWH	0.7495
	*	Electricity, China, Dongbei	KWH	0.7086
	*	Electricity, China, Huadong	KWH	0.6789
	*	Electricity, China, Huazhong	KWH	0.4543
	*	Electricity, China, Xibei	KWH	0.6878
Electricity (No transmission loss)	*	Electricity, China, Huanan	KWH	0.4506
	*	Electricity, China, Hainan	KWH	0.7328
	*	Electricity, Canada,	KWH	0.181
	*	Electricity, Mexico,	KWH	0.44
	*	Electricity, United States(US)	KWH	0.535
	*	Electricity, Australia,	KWH	0.883
	*	Electricity, Japan (JP)	KWH	0.436

Table 20. Energy related emission factor

Primary Category - Energy							
Secondary Category	ID	Name in EcoinventV2.2	Unit	Emission Factor			
	*	Electricity, Korea	KWH	0.459			
	*	Electricity, New Zealand	KWH	0.214			
	*	Electricity, Austria (AT)	KWH	0.183			
	*	Electricity, Belgium (BE)	KWH	0.249			
	*	Electricity, Czech Republic (CZ)	KWH	0.544			
	*	Electricity, Denmark (DK)	KWH	0.308			
Electricity (No transmission loss)	*	Electricity, Finland (FI)	KWH	0.187			
Electricity (No transmission loss)	*	Electricity, France (FR)	KWH	0.083			
	*	Electricity, Germany (DE)	KWH	0.441			
	*	Electricity, Greece (GR)	KWH	0.731			
	*	Electricity, Hungary (HU)	KWH	0.331			
	*	Electricity, Iceland	KWH	0.001			
No. m. Mar	*	Electricity, Ireland (IE)	KWH	0.486			
	*	Electricity, Italy (IT)	KWH	0.398			

Table 20. (Continued)

Primary Category - Energy							
Secondary Category	ID	Name in EcoinventV2.2	Unit	Emission Factor			
	*	Electricity, Luxembourg (LU)	KWH	0.315			
	*	Electricity, Netherlands (NL)	KWH	0.392			
	*	Electricity, Norway (NO)	KWH	0.005			
	*	Electricity, Poland (PL)	KWH	0.653			
	*	Electricity, Portugal (PT)	KWH	0.384			
Electricity (No transmission loss)	*	Electricity, Slovak Republic (SK)	KWH	0.217			
Electricity (No transmission loss)	*	Electricity, Spain (ES)	KWH	0.326			
	*	Electricity, Sweden (SE)	KWH	0.04			
	*	Electricity, Switzerland (CH)	KWH	0.027			
	*	Electricity, Turkey	KWH	0.495			
	*	Electricity, United Kingdom (GB)	KWH	0.487			
	*	Electricity, European Union, EU-27	KWH	0.351			
	1570	Petrol, unleaded, at refinery/CH U	kg	0.76			
Gasoline & Petrol	*	Petrol, unleaded, at refinery/CH U (L)	Lkg	3.304			

	Primary Category - Energy							
Secondary Category	ID	Name in EcoinventV2.2	Unit	Emission Factor				
Gasoline & Petrol	1571	Petrol, unleaded, at refinery/RER U	kg	0.679				
Gasonne & Ferror	*	Petrol, unleaded, at refinery/RER U (L)	L	3.193				
	- <u>-</u>	Diesel (kg)	kg	0.624				
	*	Diesel (L)	L	3.358				
Diesel	1540	Diesel, at refinery/CH U	kg	0.627				
	*	Diesel, at refinery/CH U (L)	L	3.413				
	1541	Diesel, at refinery/RER U	kg	0.485				
State State	*	Diesel, at refinery/RER U (L)	L	3.19				
		Fuel oil	kg	0.622				
Fuel oil	*	Fuel oil (L)	L	3.752				
		Heavy fuel oil, at refinery/CH U	kg	0.59				
	*	Heavy fuel oil, at refinery/CH U (L)	L	3.719				
The second		Heavy fuel oil, at refinery/RER U	kg	0.427				

Primary Category - Energy									
Secondary Category	Unit	Emission Factor							
Fuel oil	*	Heavy fuel oil, at refinery/RER U (L)	L	3.551					
	1553	Kerosene, at refinery/CH U	kg	0.627					
IV.	*	Kerosene, at refinery/CH U (L)	L	3.343					
Kerosene	1554	Kerosene, at refinery/RER U	kg	0.481					
	*	Kerosene, at refinery/RER U (L)	L	3.16					
	11798	Liquefied petroleum gas, at service station/CH U	kg	0.704					
Liquefied Petroleum Gas (LPG)	*	Liquefied petroleum gas, at service station/CH U (L)	L	2.138					
	*	Liquefied petroleum gas, at service station/CHU(L)		3.14					
S CONTRACTOR S		Natural gas (m3)	m3	0.328					
	*	Natural gas (L)	L	3.086					
Natural Gas (NG)	1412	Natural gas, at long-distance pipeline/CH U	kg	0.365					
	*	Natural gas, at long-distance pipeline/CH U (L)	L	2.928					
	1413	Natural gas, at long-distance pipeline/RER U	kg	0.38					
	*	Natural gas, at long-distance pipeline/RER U (L)	L	2.949					

Table 20. (Continued)

Primary Category - Energy									
Secondary Category	ID	Name in EcoinventV2.2	Unit	Emission Factor					
	11072	Hard coal supply mix, at regional storage/US U	kg	0.169					
and the second	*	Hard coal supply mix, at regional storage/US U	kg	2.862					
	886	Hard coal supply mix/AT U	kg	0.316					
	*	Hard coal supply mix/AT U	kg	3.009					
	887	Hard coal supply mix/BE U	kg	0.305					
	*	Hard coal supply mix/BE U	kg	2.998					
Coal	11094	Hard coal supply mix/CN U	kg	0.974					
	*	Hard coal supply mix/CN U	kg	3.667					
	895	Hard coal supply mix/CZ U	kg	0.278					
	*	Hard coal supply mix/CZ U	kg	2.971					
	889	Hard coal supply mix/DE U	kg	0.36					
	*	Hard coal supply mix/DE U	kg	3.053					
	890	Hard coal supply mix/ES U	kg	0.317					

T 11 00 (C

		Primary Category - Energy		
Secondary Category	ID	Name in EcoinventV2.2	Unit	Emission Factor
	*	Hard coal supply mix/ES U	kg	3.01
	891	Hard coal supply mix/FR U	kg	0.276
	*	Hard coal supply mix/FR U	kg	2.969
	896	Hard coal supply mix/HR U	kg	0.316
	*	Hard coal supply mix/HR U	kg	3.009
	892	Hard coal supply mix/IT U	kg	0.264
Coal	*	Hard coal supply mix/IT U	kg	2.957
Coar	893	Hard coal supply mix/NL U	kg	0.265
	*	Hard coal supply mix/NL U	kg	2.958
	897	Hard coal supply mix/PL U	kg	0.28
	*	Hard coal supply mix/PL U	kg	2.973
	894	Hard coal supply mix/PT U	kg	0.2
	*	Hard coal supply mix/PT U	kg	2.893
	898	Hard coal supply mix/SK U	kg	0.324

Table 20. (Continued)

	Table 20. (Continued) Primary Category - Energy										
Secondary Category	Secondary Category ID Name in EcoinventV2.2 Unit Emission Factor										
Coal	*	Hard coal supply mix/SK U	kg	3.017							
Steam		**									
W.	5739	Tap water, at user/CH U	kg	0.000166							
Water	2288	Tap water, at user/RER U	kg	0.000317							

Note. Table 20: * is not from Ecoinvent V2.2; ** is related data but there is no corresponding information; the data of electricity in Ecoinvent, such as Gasoline & Petrol, Diesel, Fuel oil, Kerosene, Liquefied Petroleum Gas, Natural Gas and Coal are emission factor from refinery. After some conversion, they have become general cases which closer to the current situation.

	Primary Category - Transportation										
Secondary Category	ndary Category ID Name in EcoinventV2.2										
	1893	Transport, aircraft, freight, Europe/RER U	tkm	1.67							
Aircraft	1894	Transport, aircraft, freight, intercontinental/RER U	tkm	1.07							
	1892	Transport, aircraft, freight/RER U	tkm	1.1							
	10758	Transport, lorry 3.5-7.5t, EURO3/RER U	tkm	0.484							
	10759	Transport, lorry 3.5-7.5t, EURO4/RER U	tkm	0.468							
	10760	Transport, lorry 3.5-7.5t, EURO5/RER U	tkm	0.473							
	7300	Transport, lorry 7.5-16t, EURO3/RER U	tkm	0.238							
TII	7301	Transport, lorry 7.5-16t, EURO4/RER U	tkm	0.221							
Truck, Lorry	7302	Transport, lorry 7.5-16t, EURO5/RER U	tkm	0.224							
	7303	Transport, lorry 16-32t, EURO3/RER U	tkm	0.185							
	7304	Transport, lorry 16-32t, EURO4/RER U	tkm	0.165							
	7305	Transport, lorry 16-32t, EURO5/RER U	tkm	0.168							
And the second	7306	Transport, lorry >32t, EURO3/RER U	tkm	0.121							

Table 21. Transportation related emission factor

Primary Category - Transportation										
Secondary Category	ID	Name in EcoinventV2.2	Unit	Emission Factor						
	7307	Transport, lorry >32t, EURO4/RER U	tkm	0.105						
	7308	Transport, lorry >32t, EURO5/RER U	tkm	0.107						
	1943	Transport, lorry >16t, fleet average/RER U	tkm	0.133						
Truck, Lorry	1944	Transport, lorry >28t, fleet average/CH U	tkm	0.137						
Truck, Lotty	1942	Transport, lorry 20-28t, fleet average/CH U	tkm	0.194						
	1941	Transport, lorry 3.5-16t, fleet average/RER U	tkm	0.257						
	1940	Transport, lorry 3.5-20t, fleet average/CH U	tkm	0.279						
2.0 To 10	188	Transport, tractor and trailer/CH U	tkm	0.309						
		Bulk carrierocean, technology mix, 100.000-200.000 dwt RER S	tkm	0.00243						
Ocean		Container ship ocean, technology mix, 27.500 dwt pay load capacity RER S	tkm	0.0131						
		Transport, ocean freighter, average fuel	tkm	0.0183						
2.1	1	mix/US	1							

Primary Category - Transportation											
Secondary Category	Secondary Category ID Name in EcoinventV2.2										
		Transport, ocean freighter, diesel powered/US	tkm	0.0166							
Ocean		Transport, ocean freighter, residual fuel oil powered/US	tkm	0.0185							
	1983	Transport, freight, rail/RER U	tkm	0.0394							
Rail	11095	Transport, coal freight, rail/CN U	tkm	0.0443							
	11073	Transport, freight, rail, diesel/US U	tkm	0.0497							

Note. Table 21: As for oil tank trucks for transportation in CPC Corporation, Taiwan, there are two kinds of oil tank trucks. The first one is an empty truck (about 10 tons weight), and the capacity of the oil for a truck is about 15 to 16 tons, so the weight of a full truck will be 25 to 26 tons. The second one is an empty trailer (about 11 tons weight), and the capacity of the oil for a trailer is about 24 tons, so the weight of a full trailer will be 35 tons.

5.3.3 Inventory Table for Supply Chain Companies

In the speaking of supply chain companies having done their own inventory analysis on their product, they should fill in the table, as shown in Table 22, to prove the correctness of the result to the primary company as long as they follow the government's regulation and the result is confirmed by the third parties. Apparently, it is a simple table, but it can be used for both B2B and B2C products. Besides, if supply chain companies want to perform the inventory analysis on their product, they can also use the same table to perform their inventory analysis and some detail information can be found from the previous table of different categories of related emission factor. Finally, the result should be confirmed by the third parties in the same way.

Company (Supply)	Name	Location	Contact person	Tel.	E-mail			Note		
Product	Name	Item number	Item number (supply)	Spec.	weight	Inventory date		Product figur	e	Note
Process map of product's life cycle										
Material	Activity	Item number	Amount usage (activity data)	Unit	Allocation rule	Ingredient	Percentage (%)	Carbon emissions factor	Carbon footprint of a given activity	Note

Table 22. Inventory table for supply chain companies

	Activity	Item number	Activity data	Unit	Allocation rule			Carbon emissions factor	Carbon footprint of a given activity	Note
Manufacture										
	Activity	Transp. tool	Distance (km)	Weight (ton)	Allocation rule	Beginning place	End place	Carbon emissions factor	Carbon footprint of a given activity	Note
Transportation										

Table 22. (Continued)

	Carlo Carlos	Contraction of the		Table	22. (Continueu)		AND NE REDUCE OF	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	Activity		Activity data	Unit	Allocation rule	Carbon emissions factor	Carbon footprint of a given activity	Note
Use								
End-of-life	Activity	Item number	Activity data	Unit	Allocation rule	Carbon emissions factor	Carbon footprint of a given activity	Note
End-or-ine								
Product carbon footprint	a jest	Core .	Desired		(Jacob)	Cont Barris	Constrained	

Table 22 (Continued)

5.3.4 Summary

In this database, particularly in "Electricity", there are only data for one specific year, and lack of data for different category. Therefore, it needs every supply chain company to do inventory analysis without hesitate and collect other data from different database or public data to update data quality. At last, it will be the standard database in Asia for display industry.

WDICC Report

6 Case Study of Standard Calculation Product Carbon Footprint of a

TFT LCD Module and Related Final Products (Appendix B)

6.1 Goal and Scope

The goal and scope are defined in the previously content. Just follow the detailed content as mentioned previously to calculate the product carbon footprint. In order to increase the comparability of product carbon footprint of LCD module, it is necessary to select some basic parts and high GHG emission parts in LCD module for establishing LCD module product carbon footprint standard calculation. Besides, the aim is to let supply chain company to have its own ability to calculate carbon footprint of their components by demonstrating this assessment. This example is using bill-of-material (BOM) data of a 32inch TV in 2009 provided by AUO Corp.

6.2 Fundamental Parts of a TFT-LCD Module

It is important to understand the fundamental parts of TFT-LCD module. According to the introduction of TFT-LCD Process and TFT-LCD module, as shown in Table 23, some basic parts and high GHG emission parts are selected to be the necessary parts that must be calculated in the carbon footprint standard of a TFT-LCD module. On the other hand, some supplementary materials (chemicals) are also selected to be the necessary parts such as Nitrous oxide, Sulfur hexafluoride, Nitrogen trifluoride and so on.

Chinese	English		
前框	Bezel front		
偏光片	Polarizer film		
彩色濾光片	Color filter		
液晶	Liquid crystal		
TFT 玻璃	TFT array glass		
驅動 IC 與印刷電路板	Driver IC & PCBA		
擴散片	Diffuser film		
擴散板	Diffuser plate		
膠框	Plastic frame		
背光源	Light source		
背板	Bezel back		
主控制版	Control board		
背光模組點燈器	Inverter		

Table 23.Name of fundamental parts in both Chinese and English [7]

6.3 System Boundaries of a TFT-LCD Module and a TV set

As mentioned before, the standard calculations are classified into two types of standards, primary company and supply chain company, respectively. Primary company is the midstream company that manufacture TFT-LCD module. As for typically primary companies, they will manufacture the array (+color filter) and cell in the same facility and module assembly will be execute in another facility, as shown in Figure 4. Finally, they will offer LCD modules for the downstream companies such as TV set manufacturers, and the system boundaries will be extended, as shown in No.3 in Table 24.

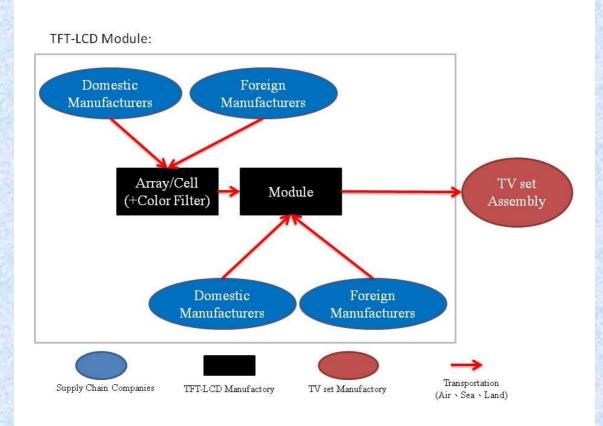
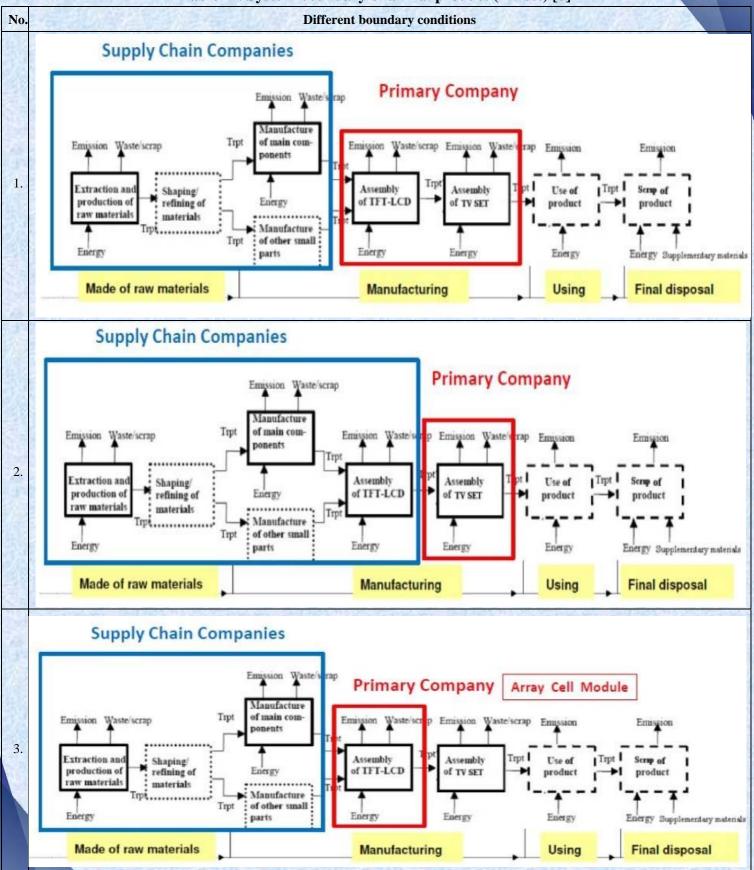



Figure 4. System boundary of the primary company for display industry

 Table 24. System boundary of a final product (TV set) [8]

53

WDICC Report

6.4 TFT-LCD Module Calculation (B2B)

For calculation product carbon footprint of a LCD module, the following equations should be used [2]:

$MCF_{LCDM} (kg CO_2 eq) = [(GHG_F/A_{input}) x (A_{LCDM} + A_{scrap})]$

where

 MCF_{LCDM} = the manufacturing carbon footprint of a single LCD module (kg CO₂ eq) GHG_F = the total manufacturing <u>facility</u> greenhouse gas emission in a year (kgCO₂ eq) eq)

 A_{input} = the total input glass area (for TFT and color filter) brought into the facility in a year (in m²)

 A_{scrap} = the area of glass scrap (will be a function of the generation and display area) Note: scrap may not be relevant for module assembly

 A_{LCDM} = the total area of a specific LCD (in m²)

PCF of a LCD Module = MCF_{LCDM}+UCF_{LCDM}

 UCF_{LCDM} (kg CO_2 eq) = ($CF_e x W_e$) +($CF_b x W_b$)+($CF_h x W_h$)+... and some other components

where

 UCF_{LCDM} = the upstream carbon footprint of a single LCD module (kg CO2 eq)

 CF_e = average carbon footprint of electronics per kg of electronics from LCI database (kg CO₂ eq/kg electronics)

 W_e = total weight of the electronics within the LCD Module

 CF_b = average carbon footprint of backlight unit per kg of electronics from LCI database (kg CO₂ eq/kg backlight unit)

 W_b = total weight of the backlight unit within the LCD Module

 CF_h = average carbon footprint of housing per kg of electronics from LCI database (kg CO₂ eq/kg housing)

 W_h = total weight of the housing within the LCD Module

Note. If supply chain companies can offer the inventory data of their components, the data source doesn't have to be LCI database.

The foregoing is the standard calculation procedure for a TFT-LCD module in manufacturing stage. The whole coverage (B2B) of a TFT-LCD module will be present in the following contents by using a 32inch TV.

6.4.1 TFT-LCD Module - Raw Materials Stage

According to BOM of a 32inch module, the following chosen parts are some necessary parts and high GHG emission chemicals for the standard calculation as shown in Table 25 and Table 26. Furthermore, there are special gases which have extremely high emissions factor. As a result, there some assumptions for recycling those gases, as shown in Table 27 and Table 28. At last, the carbon footprint of the TFT-LCD module for raw material stage is $405.292552 \text{ kg CO}_2 \text{ eq}$, as shown in Table 38.

	Categ	gory	Parts Names	kg	Emission Factor (kgCO ₂ eq/kg)	Production (kgCO2eq)
CHO GA			PCBA_A	0.018	222.78	4.01004
		Sec. S	PCBA_B	0.028	228.57	6.39996
22.22	3405	EE	Driver IC_A	0.000179	1990.63	0.356999584
			Driver IC_B	0.000824	897.69	0.740001775
10-11-11		a 1 70	ACF	0.000645	60.14	0.038799983
Module		ñ.,	Bezel front	0.582	4.16	2.42112
Wiodule	Panel	3.37	Таре	0.004	7.65	0.0306
	I allel		Cushion bezel poron_A	0.008	84.25	0.674
12.58			1. 200	Cushion bezel poron_B	0.008	170
1215-12	200	OM	Thermal pad	0.0084	5.13	0.043092
			Plate shielding	0.021	38.62	0.81102
			Screw_A	0.007765	0.02	0.000155304
			(E.).	Screw_B	0.00453	3.18
e on the s	1312	1	Backlight unit	Lack of data	Lack of data	Lack of data

Table 25. Carbon footprint of the TFT-LCD module (Raw material stage – Array, Cell, CF, EE, OM and so on)

20030000	Table 25. (Continued)						
	Categ	gory	Parts Names	kg	Emission Factor (kgCO2eq/kg)	Production (kgCO2eq)	
			Inverter	0.16	300.63	48.1008	
		Sec.	Plate diffuser	0.6	10.85	6.51	
	1.1.1		Sheet diffuser	0.077	2.71	0.20867	
			Sheet DBEF	0.14	2.59	0.3626	
			Sheet prism		2.1286		
		200	Sheet reflector		11	0.66	
		0.00	Bezel back		3.63	9.801	
	Frame lower 0.091	9.45	0.85995				
Module		Fame upper0.0859.4	9.59	0.81515			
Module	PanelOMInverterLamp suLamp suLamp blocLamp blocLamp blocLamp blocLamp blocLamp blocLamp blocLamp blocLamp blocLamp bloc	Inverter cover	0.09	11.67	1.0503		
			Lamp support	0.0056	14.66	0.082096	
			Lamp block (right)	0.136	8.75	1.19	
			Lamp block (left)	0.136	8.75	1.19	
			Таре	0.0022	2.55	0.00561	
			Label	0.00043	14.7	0.006321	
			Rubber_A	0.0032	20.38	0.065216	
	Distance in		Rubber_B	0.00011	Lack of data	Lack of data	
			Rubber_C	0.00011	Lack of data	Lack of data	
DAY A		201	Screw_C	0.0024	88.75	0.213	

Table 25. (Continued)

	(Category	Parts Names	kg	Emission Factor (kgCO ₂ eq/kg)	Production (kgCO2eq)
	12212	Telen The	Screw_D	0.003	5.2	0.0156
	OM		Connector	0.000738	172.09	0.12700242
		Cable_A	0.0002	332	0.0664	
		Cable_B 0.0002	332.5	0.0665		
	公里之		CCFL	0.080412	717.55	57.6996306
			Rubber_D	0.0082	1.8	0.01476
	Iodule Panel Array Target ITO Mo target Al target Glass AU ball Sealant	0.0045	119.11	0.535995		
		A	Mo target	0.0184	10.16	0.186944
Modulo		Array	Al target	0.04	2.53	0.1012
Module		Glass	0.3	4.4	1.32	
		The second	AU ball	6.4E-06	6687.5	0.0428
		0.000123	5.31	0.000653427		
			Power seal	1.33E-06	2.7	3.59937E-06
		Cell	Polarizer_A	0.112	55.89	6.25968
		Valessi	Polarizer_B	0.115	53.39	6.13985
			Liquid polyimides	0.006	22.67	0.13602
			Liquid crystal	0.001046	2.02	0.002112872
	A. 3-2	Color filter	Glass	0.3	4.4	1.32
		Color Inter	ITO_A	0.0132	85.61	1.130052

Table 25. (Continued)

	C	Category	Parts Names	kg	Emission Factor (kgCO2eq/kg)	Production (kgCO2eq)
	2012	and and all	ITO_B	0.01782	0.25	0.004455
	BM 0.04244	0.04244	2.17	0.092094583		
	and the second	Color filter	MVA	0.038419	5.05	0.19401595
		Color resist	0.172082	3.03	0.521407854	
	A. 17		PS 0.068488	0.66	0.045202212	
Module		Panel	Label	0.00047	13.4	0.006298
Module	Panel		Film protect	0.00032	2.75	0.00088
	344		Crepe paper tape	0.0012	1.24	0.001488
		Deckerse	Bag anti-static	0.05	2.14	0.107
		Package	Cushion packing	0.6125	0.31	0.189875
			Packing carton	0.4125	0.32	0.132
		La Grander	Label	0.000035	0.38	0.0000133
TS M			OPP	0.0006	Lack of data	Lack of data

Table 25. (Continued)

WDICC Report

	Category	Parts Names	kg	Emission Factor (kgCO ₂ eq/kg)	Production (kgCO2eq)
	a state and the state	Aluminum etch	2.282205	1.6	3.65152764
29311		EBR	2.003199	2.05	4.106557269
		Developer	0.91059	0.06	0.054635412
		Stripper	19.96597	2.61	52.11117588
1. 1. 1.		Photo resist	0.925298	1.36	1.258404676
HOGH		NMP	0.213057	Lack of data	Lack of data
		Oxalic acid	0.202835	Lack of data	Lack of data
12.22		Isopropyl alcohol	0.017583	3.19	0.05608865
Madula		Oxygen	1.963	0.41	0.804829889
Module	Supplementary material	Argon	0.087231	0.31	0.027041733
1	and the second second	Hydrogen	2.263108	1.66	3.756759318
(A) (2)		Helium gas	0.193409	0.93	0.179870499
195		Ammonia	0.147946	2.12	0.313645378
and the second		Chlorine	0.077815	0.88	0.068477291
		Ethanol	0.083134	0.33	0.02743411
		Acetone	0.152393	2.22	0.338312427
		PH ₃ /H ₂	0.062564	1.66	0.103856736
		Photo resist	1.119983	3.25	3.639944406
20.244		Thinner	0.884349	3.55	3.139439234

 Table 26. Carbon footprint of the TFT-LCD module (Raw material stage - Supplementary material)

		Table 26. (Continued)		
1	Category	Parts Names	kg	Emission Factor (kgCO2eq/kg)	Production (kgCO2eq)
		Eterpol EPLL301	0.006707	11.54	0.077401469
		PK-LCG432	0.088461	Lack of data	Lack of data
		Soda buffer solution	1.698829	1.22	2.072571651
		Hydrogen peroxide	0.000252	1.21	0.000305072
A star		Sodium bisulfite	0.002088	Lack of data	Lack of data
146		Sodium hypochlorite	5.01E-05	0.92	4.60806E-05
ST TH		Sodium hydroxide	0.028642	1.24	0.035516575
2.28	Supplementary material	Sulfuric acid	0.026368	0.14	0.003691526
Madula		Polymer	0.000365	Lack of data	Lack of data
Module		Poly aluminum chloride (PAC)	0.02249	Lack of data	Lack of data
		Calcium chloride	0.024142	0.89	0.021486371
1.1.2		Hydrogen peroxide	0.000257	1.21	0.000311407
334		Sodium bisulfite	0.002132	Lack of data	Lack of data
		Sodium hypochlorite	5.11E-05	0.92	4.70374E-05
		Sodium hydroxide	0.029237	1.24	0.036253988
		Sulfuric acid	0.026916	0.14	0.003768171
		Polymer	0	Lack of data	0
		Poly aluminum chloride (PAC)	0	Lack of data	0
L. Ale		Calcium chloride	0.024643	0.89	0.021932482
N. Ker	Sec. Sec. 34	SUM	1015-54		242.5207723

Note. If supply chain companies have done their inventory analysis, the data can be used primarily for calculation. If supply chain companies didn't do the inventory analysis, then the standard database for display industry can be used, as shown in Appendix A.

Special Gases	kg	Recycle Ratio (%)	Actual Usage (kg)	Emission Factor (kgCO2eq/kg)	Production (kgCO2eq)
Nitrous oxide (N ₂ O)	32.39178173	99.83690249	0.052830189	265	14
Carbon dioxide (CO ₂)	2.083526356	16.00778197	1.75		1.75
Nitrous oxide (N ₂ O)	0.044445447	100	0	265	0
SUM					

Table 27. Carbon footprint of the TFT-LCD module (Raw material stage – Special gases of supplementary material)

Note. For Table 27, there are different process that requires nitrous oxide (N_2O) and actual recycling situation for different process is different. Hence, there are two nitrous oxide (N_2O) in this table for two different consumptions and assume all special gases are only used once in the module in the raw material stage in this calculation.

As mentioned previously in the standard estimation of carbon footprint emissions for those powerful greenhouse gases, the estimation results of special gases are shown in **Table 28**.

	Input (kg)	Actual use ratio (%)	Emissions Factor (kgCO2eq/kg)	Production emission (kgCO2eq)
Nitrogen trifluoride (NF ₃)	0.218747807	2.61	16100	91.92001598
Sulfur hexafluoride (SF ₆)	0.0685601	3.42	23500	55.10176375
	147.0217797			

Table 28. Carbon emissions of the TFT-LCD module (Raw material stage – FCs of supplementary material)

WDICC Report

6.4.2 TFT-LCD Module - Manufacturing Stage

Because of lacking detailed data about where to manufacture this TFT-LCD module, there are some data from other literature will be used, as shown in Table 29. However, the data of total greenhouse emissions for this manufactory only includes Scope1 and Scope2 emissions and greenhouse emissions for manufactory of module assembly is not included because scope 3 emissions is hard to calculate and emission hotspots for manufacturing stage are array (+color filter) and cell processes. Therefore, it is acceptable for demonstration for this case study in manufacturing stage.

The scenario is this 32inch TFT-LCD module shipping for the final product (a 32inch TV set). According to the generations of the module manufactories, above 30inch modules should be manufactured in 6th or even higher generation manufactories. In this stage, we assume that this module is manufactured in 6th generation (G6) manufactory, which located in Taichung, Taiwan, and this G6 manufactory only manufactures standard glass substrates for 32inch modules and the related processes for this manufactory only includes array(+color filter) and cell processes, as shown in Table 30. According to the maximum cutting numbers for a standard size glass substrate, there are eight 32inch modules can be cut from a standard size glass substrate, and the remaining area for a standard size glass substrate will be 0.52 m^2 , as shown in Table 30. Consequently, using the following information for standard calculation for manufacturing stage will the carbon footprint result of manufacturing a 32inch module in this G6 manufactory, as shown in Table 32.

Generation of Manufactory	Total Green House Gas Emissions for This Manufactory in 2009 (kg CO ₂ eq)	Total Input Glass Area for This Manufacturing Process in 2009 (m²)
G6 manufactory	780781000	5443934

Table 30. Standard size for a glass substrate in the G6 manufactory [9]

G6 manufactory	Length(mm) x Width(mm)	Area(m ²)
Standard size for a glass substrate	1500x1850	2.775

Generation Manufactory	Size for a Standard Glass Substrate	Maximum Cutting Numbers for 32inch Modules from a Standard Size Glass Substrate	Size for a 32inch Module	Remaining Area (Scrap Area)
G6 manufactory	1500mm x 1850mm	8 modules	708.42mm x 398.48 mm (0.28m ²)	0.52 m ²

Table 31. Size for a 32inch module and remaining area

Table 32. Carbon footprint of the TFT-LCD module (Manufacturing stage)

Standard Calculation	Carbon Footprint for the TFT-LCD Module
	(A 32inch Module) for manufacturing stage
(780781000/5443934) *(0.28+0.52)	114.6315034 kgCO ₂ eq

6.4.3 TFT-LCD Module - Transportation Stage

In typically primary companies, the array (+color filter) and cell process will be put in the same manufactory and module process will be moved to another manufactory. The reason is that the array (+color filter) and cell process are technology-intensive processes and module process is labor-intensive process. Therefore, it will be easier to control the pollutants and waste in the same manufactory which has a technology-intensive process and choosing countries which have low labor cost to reduce the cost of the product for module process is necessary task for every primary company.

In the manufacturing stage, we have already assumed that the array (+color filter) and cell processes are in G6 manufactory which located in Taichung, Taiwan. In order to reduce the labor cost for module process, we assume that manufactory which has module process is located in Xiamen, China. In this stage, the calculation of carbon footprint should follow the real purchase status of primary company. However, the real purchase status from different supply chain companies is not given. The following companies randomly chosen from real companies around the world, as shown in Table 33, are used for demonstration of calculation of carbon footprint in transportation stage.

In transportation stage, there are only some parts of components and chemicals are chosen to be calculate for carbon footprint emissions because the amount of some components is extremely small and the allocation method for calculation uses the ration between the weight of specific material and the maximum load of each transportation to allocate carbon footprint emissions.

Process and Chemicals	Parts	Name of Supply Chain Company
Array	Glass	Corning Inc. Taiwan
Cell	Polarizer_A	Sumika Technology Co., Ltd.
	Polarizer_B	Sumika Technology Co., Ltd.
Color filter	Glass	Corning Inc. Taiwan
	Color resist	Topgiga Material CORP.
ОМ	Bezel front	I-CHIUN PRECISION
	Inverter	Darfon Electronics Corp.
	Plate diffuser	Darwin Precisions Corp. (Xiamen)
	Sheet diffuser	Darwin Precisions Corp. (Xiamen)
	Sheet DBEF	3M Taiwan Ltd.
	Sheet prism	3M Taiwan Ltd.
	Bezel back	I-CHIUN PRECISION INDUSTRY CO., LTD.
	Frame lower	I-CHIUN PRECISION INDUSTRY CO., LTD.
	Fame upper	I-CHIUN PRECISION INDUSTRY CO., LTD.
	Inverter cover	Darwin Precisions Corp. (Xiamen)
	Lamp block (right)	Lextar Electronics Corporation.

 Table 33. Some important purchase status (Randomly choose from real companies around the world)

Table 33. (Continued)							
Process and Chemicals	Parts	Name of Supply Chain Company					
OM	Lamp block (left)	Lextar Electronics Corporation.					
OM	CCFL	Lextar Electronics Corporation.					
	Cushion packing	SEN WEI PACKING CO., LTD.					
Package	Packing carton	Chun Ying Paper CO., LTD.					
	Aluminum etch	TAIWAN MAXWAVE CO., LTD.					
	EBR	SUN SURFACE TECHNOLOGY CO., LTD.					
	Developer	SUN SURFACE TECHNOLOGY CO., LTD.					
	Stripper	SUN SURFACE TECHNOLOGY CO., LTD.					
	Nitrogen trifluoride	Jing He Science Co., LTD.					
	Photo resist_A	S.M.S. Technology CO., LTD.					
	NMP	ECHO CHEMICAL CO., LTD.					
Supplementary material	Oxalic acid	First Chemical Co., Ltd.					
	Nitrous oxide	Jing He Science Co., LTD.					
	Oxygen	Jing He Science Co., LTD.					
	Argon	Jing He Science Co., LTD.					
	Carbon dioxide	Jing He Science Co., LTD.					
	Hydrogen	Jing He Science Co., LTD.					
	Helium gas	Jing He Science Co., LTD.					
	Ammonia	Jing He Science Co., LTD.					

Process and Chemicals	Parts	Name of Supply Chain Company
	Chlorine	Cheng Chiao Group., LTD.
	Ethanol	ECHO CHEMICAL CO., LTD.
	Acetone	ITOCHU Taiwan Corp.
Supplementary material	Photo resist_B	S.M.S. Technology CO., LTD.
	Thinner	SUN SURFACE TECHNOLOGY CO., LTD.
	PK-LCG432	Lack of data
	Soda buffer solution	Lack of data

Note. These supply chain companies are chosen to be in this calculation for only demonstration, so there is a chance that those companies do not have that exact the same materials or chemicals. As a result, the intention is to show the fact of complexity in choosing different material or chemical from different supply chain companies

According to the selected supply chain companies, each material will be delivered to the corresponding manufactories. Besides, we assume that the land transportation in Taiwan will be a lorry (3.5t) which can carry 1.5 tons materials; the land transportation in China is the same as Taiwan; the sea transportation between different countries will be a freight ship which can carries 20TEU (7188.48 tons) materials, as shown in Table 34. (*Note. 1TEU can carries 28080kg of material* [10]).

Information of Transportation Mode	Maximum Load	Emission Factor (kgCO2eq/tkm)	Data Source
Land Transportation in Taiwan	1.5t	0.24 [11]	Carbon Footprint Calculation
(Lorry, 3.5t)			Platform, Taiwan
Sea Transportation between Different Countries	20TEU (7188.48t)	0.010751	Ecoinvent V 2.2 – ID:1968,
(Standard Freight Ship)			transport, transoceanic freight
			ship, OCE
Land Transportation in China	1.5t	0.24	Lack of data replaces it by data in
(Lorry, 3.5t)			Taiwan

Table 34. Information of transportation mode and corresponding emission factor

Google Maps is used to plan the shortest way between supply chain companies and the primary company and measure the real distance for land transportation in Taiwan, and China. On the other hand, we assume that there are two ports. One is Taichung Port (Taiwan) and the other one is Xiamen Port (China) The real distance between two ports is fixed value (136 nautical mile) in sea transportation (*Note. 1 nautical mile = 1.852 meters*). The following information is the transport planning between supply chain companies and primary companies, as shown in Table 35.

In this result, we assume that each transportation mode is independent, and we do not consider the volume of material. It means that each transportation can carry the maximum weight of material same as its maximum load. For the carbon footprint of each material, it will be the sum of allocation result of each independent transportation mode. Besides, the method of allocation is about the ratio of the weight of corresponding material to the maximum carrying load of corresponding material, as shown in Table 36. Finally, the carbon footprint of transportation stage is 1.573435201 kgCO₂eq, as shown in Table 37.

Table 35. Result of transport planning between supply chain companies and primary companies (LT: Land Transportation, ST: Sea

	101	11 al	isportation)	101 102			
Process and	Parts	Location of Supply Chain	Location of Primary	Resul	Result of transport planning		
Chemicals	Parts	Company	Company	LT(Taiwan) km	ST(Countri es) km	LT(China) km	
Array	Glass	Tainan, Taiwan	Taichung, Taiwan	160	0	0	
C-II	Polarizer_ A	Tainan, Taiwan	Taichung, Taiwan	160	0	0	
Cell	Polarizer_ B	Tainan, Taiwan	Taichung, Taiwan	160	0	0	
Marine and	Glass	Tainan, Taiwan	Taichung, Taiwan	160	0	0	
Color filter	Color resist	Miaoli, Taiwan	Taichung, Taiwan	70	0	0	
	Bezel front	Xinbei, Taiwan	Xiamen, China	150	251.872	35	
	Inverter	Taoyuan, Taiwan	Xiamen, China	140	251.872	35	
	Plate diffuser	Xiamen, China	Xiamen, China	0	0	(Location too close)	
ОМ	Sheet diffuser	Xiamen, China	Xiamen, China	0	0	(Location too close)	
	Sheet DBEF	Tainan, Taiwan	Xiamen, China	160	251.872	35	
	Sheet prism	Tainan, Taiwan	Xiamen, China	160	251.872	35	
	Bezel back	Xinbei, Taiwan	Xiamen, China	150	251.872	35	

Transportation)

Process and	Constant and	Location of Supply Chain	Location of Primary	Result o	f transport pla	anning
Chemicals	Parts	Location of Supply Chain Company	Company	LT(Taiwan)	LT(Taiwan)	LT(Taiwan)
Chemieals		Company	Company	km	km	km
and the second	Frame lower	Xinbei, Taiwan	Xiamen, China	150	251.872	35
Contraction of the	Fame upper	Xinbei, Taiwan	Xiamen, China	150	251.872	35
	Inverter cover	Taoyuan, Taiwan	Xiamen, China	140	251.872	35
ОМ	Lamp block (right)	Hsinchu, Taiwan	Xiamen, China	90	251.872	35
	Lamp block (left)	Hsinchu, Taiwan	Xiamen, China	90	251.872	35
	CCFL	Hsinchu, Taiwan	Xiamen, China	90	251.872	35
and the second	Cushion	Taichung, Taiwan	Taichung, Taiwan	(Location to	0	0
Package	packing	おけていたかった。		close)	170.0	
	Packing carton	Changhua, Taiwan	Taichung, Taiwan	30	0	0
	Aluminum	Taipei, Taiwan	Taichung, Taiwan	170	0	0
	etch				1.11.11	
Supplementary	EBR	Yunlin, Taiwan	Taichung, Taiwan	75	0	0
materials	Developer	Yunlin, Taiwan	Taichung, Taiwan	75	0	0
	Stripper	Yunlin, Taiwan	Taichung, Taiwan	75	0	0

Table 35. (Continued)

Process and	Sector Andrews	Location of Supply Chain	Location of Primary	Result o	f transport pla	nning
Chemicals	Parts	Company	Company	LT(Taiwan) km	LT(Taiwan)	LT(Taiwan)
	Nitrogen trifluoride	Jhongli, Taiwan	Taichung, Taiwan	120	<u>km</u> 0	km 0
2 D. 12	Photo resist	Taipei, Taiwan	Taichung, Taiwan	170	0	0
10	NMP	Taichung, Taiwan	Taichung, Taiwan	(Location to close)	0	0
	Oxalic acid	Taipei, Taiwan	Taichung, Taiwan	170	0	0
C I	Nitrous oxide	Jhongli, Taiwan	Taichung, Taiwan	120	0	0
Supplement ary	Oxygen	Yunlin, Taiwan	Taichung, Taiwan	75	0	0
materials	Argon	Yunlin, Taiwan	Taichung, Taiwan	75	0	0
1	Carbon dioxide	Yunlin, Taiwan	Taichung, Taiwan	75	0	0
2401612	Hydrogen	Yunlin, Taiwan	Taichung, Taiwan	75	0	0
1.00	Helium gas	Yunlin, Taiwan	Taichung, Taiwan	75	0	0
12.2.2.2	Nitrous oxide	Jhongli, Taiwan	Taichung, Taiwan	120	0	0
203052	Ammonia	Yunlin, Taiwan	Taichung, Taiwan	75	0	0
	Chlorine	Changhua, Taiwan	Taichung, Taiwan	30	0	0

Table 35. (Continued)

Process and	Sector Andrews	Location of Supply Chain	Location of Drimony	Result o	Result of transport planning			
Chemicals	Parts	Location of Supply Chain Company	Location of Primary Company	LT(Taiwan) km	LT(Taiwan)	LT(Taiwan)		
100					km	km		
	Ethanol	Taichung, Taiwan	Taichung, Taiwan	(Location to	0	0		
	and the second second			close)				
自動会社の理	Acetone	Taipei, Taiwan	Taichung, Taiwan	170	0	0		
Supplement	Photo resist	Taipei, Taiwan	Taichung, Taiwan	170	0	0		
ary	Thinner	Yunlin, Taiwan	Taichung, Taiwan	75	0	0		
materials	PK-LCG432	No exact data	Taichung, Taiwan	Lack of data	Lack of data	Lack of data		
111-25		(Maybe from Japan)						
	Soda buffer	No exact data	Taichung, Taiwan	Lack of data	Lack of data	Lack of data		
	solution	(Other country)				di sinta a		

Table 35. (Continued)

Parts	Usage rate per unit of production (kg)	Maximum Load: LT Taiwan (t)	Maximum Load: ST Countries (t)	Maximum Load: LT China (t)	Allocation Ratio: LT Taiwan	Allocation Ratio: ST Countries	Allocation Ratio: LT China
Glass	0.3	1.5	7188.48	1.5	0.0002	4.17334E-08	0.0002
Polarizer_A	0.112	1.5	7188.48	1.5	7.4667E-05	1.55805E-08	7.46667E-05
Polarizer_B	0.115	1.5	7188.48	1.5	7.6667E-05	1.59978E-08	7.66667E-05
Glass	0.3	1.5	7188.48	1.5	0.0002	4.17334E-08	0.0002
Color resist	0.17208	1.5	7188.48	1.5	0.00011472	2.39386E-08	0.000114721
Bezel front	0.582	1.5	7188.48	1.5	0.000388	8.09629E-08	0.000388
Inverter	0.16	1.5	7188.48	1.5	0.00010667	2.22578E-08	0.000106667
Plate diffuser	0.6	1.5	7188.48	1.5	0.0004	8.34669E-08	0.0004
Sheet diffuser	0.077	1.5	7188.48	1.5	5.1333E-05	1.07116E-08	5.13333E-05

Table 36. The allocation ratio of each independent transportation mode (LT: Land Transportation, ST: Sea Transportation)

Parts	Usage rate per unit of production (kg)	Maximum Load: LT Taiwan (t)	Maximum Load: ST Countries (t)	Maximum Load: LT China (t)	Allocation Ratio: LT Taiwan	Allocation Ratio: ST Countries	Allocation Ratio: LT China
Sheet DBEF	0.14	1.5	7188.48	1.5	9.3333E-05	1.94756E-08	9.33333E-05
Sheet prism	0.29	1.5	7188.48	1.5	0.00019333	4.03423E-08	0.000193333
Bezel back	2.7	1.5	7188.48	1.5	0.0018	3.75601E-07	0.0018
Frame lower	0.091	1.5	7188.48	1.5	6.0667E-05	1.26591E-08	6.06667E-05
Fame upper	0.085	1.5	7188.48	1.5	5.6667E-05	1.18245E-08	5.66667E-05
Inverter cover	0.09	1.5	7188.48	1.5	0.00006	1.252E-08	0.00006
Lamp block (right)	0.136	1.5	7188.48	1.5	9.0667E-05	1.89192E-08	9.06667E-05
Lamp block (left)	0.136	1.5	7188.48	1.5	9.0667E-05	1.89192E-08	9.06667E-05
CCFL	0.08041	1.5	7188.48	1.5	5.3608E-05	1.11862E-08	0.000053608
Cushion packing	0.6125	1.5	7188.48	1.5	0.00040833	8.52058E-08	0.000408333

Table 36. (Continued)

Parts	Usage rate per unit of production (kg)	Maximum Load: LT Taiwan (t)	Maximum Load: ST Countries (t)	Maximum Load: LT China (t)	Allocation Ratio: LT Taiwan	Allocation Ratio: ST Countries	Allocation Ratio: LT China
Packing carton	0.4125	1.5	7188.48	1.5	0.000275	5.73835E-08	0.000275
Aluminum etch	2.2822	1.5	7188.48	1.5	0.00152147	3.17481E-07	0.00152147
EBR	2.0032	1.5	7188.48	1.5	0.00133547	2.78668E-07	0.001335466
Developer	0.91059	1.5	7188.48	1.5	0.00060706	1.26674E-07	0.00060706
Stripper	19.966	1.5	7188.48	1.5	0.01331065	2.7775E-06	0.013310645
Nitrogen trifluoride	0.21875	1.5	7188.48	1.5	0.00014583	3.04303E-08	0.000145832
Photo resist	0.9253	1.5	7188.48	1.5	0.00061687	1.2872E-07	0.000616865
NMP	0.21306	1.5	7188.48	1.5	0.00014204	2.96387E-08	0.000142038
Oxalic acid	0.20283	1.5	7188.48	1.5	0.00013522	2.82166E-08	0.000135223
Nitrous oxide	32.3918	1.5	7188.48	1.5	0.02159452	4.50607E-06	0.021594521
Oxygen	1.963	1.5	7188.48	1.5	0.00130867	2.73076E-07	0.001308666

Table 36. (Continued)

Parts	Usage rate per unit of production (kg)	Maximum Load: LT Taiwan (t)	Maximum Load: ST Countries (t)	Maximum Load: LT China (t)	Allocation Ratio: LT Taiwan	Allocation Ratio: ST Countries	Allocation Ratio: LT China
Argon	0.08723	1.5	7188.48	1.5	5.8154E-05	1.21349E-08	5.81543E-05
Carbon dioxide	2.08353	1.5	7188.48	1.5	0.00138902	2.89842E-07	0.001389018
Hydrogen	2.26311	1.5	7188.48	1.5	0.00150874	3.14824E-07	0.001508739
Helium gas	0.19341	1.5	7188.48	1.5	0.00012894	2.69054E-08	0.000128939
Nitrous oxide	0.04445	1.5	7188.48	1.5	2.963E-05	6.18287E-09	2.96303E-05
Ammonia	0.14795	1.5	7188.48	1.5	9.8631E-05	2.0581E-08	9.86306E-05
Chlorine	0.07782	1.5	7188.48	1.5	5.1877E-05	1.0825E-08	5.18767E-05
Ethanol	0.08313	1.5	7188.48	1.5	5.5422E-05	1.15648E-08	5.54224E-05
Acetone	0.15239	1.5	7188.48	1.5	0.0001016	2.11996E-08	0.000101595
Photo Resist	1.11998	1.5	7188.48	1.5	0.00074666	1.55802E-07	0.000746655
Thinner	0.88435	1.5	7188.48	1.5	0.00058957	1.23023E-07	0.000589566
PK-LCG432	0.08846	1.5	7188.48	1.5	5.8974E-05	1.2306E-08	5.89743E-05
Soda buffer solution	1.69883	1.5	7188.48	1.5	0.00113255	2.36327E-07	0.001132553

Table 36. (Continued)

Parts	LT: Taiwan (tkm)	ST: Countries (tkm)	LT: China (tkm)	Carbon Footprint Emissions (kgCO ₂ eq)
Glass	240	0	0	0.01152
Polarizer_A	240	0	0	0.0043008
Polarizer_B	240	0	0	0.004416
Glass	240	0	0	0.01152
Color resist	105	0	0	0.002890974
Bezel front	225	1810576.835	52.5	0.027416784
Inverter	210	1810576.835	52.5	0.00715326
Plate diffuser	(Location to close)	(Location to close)	(Location to close)	(Location to close)
Sheet diffuser	(Location to close)	(Location to close)	(Location to close)	(Location to close)
Sheet DBEF	240	1810576.835	52.5	0.006931103
Sheet prism	240	1810576.835	52.5	0.014357284
Bezel back	225	1810576.835	52.5	0.127191265
Frame lower	225	1810576.835	52.5	0.004286817
Fame upper	225	1810576.835	52.5	0.004004169
Inverter cover	210	1810576.835	52.5	0.004023709
Lamp block (right)	135	1810576.835	52.5	0.004448271
Lamp block (left)	135	1810576.835	52.5	0.004448271
CCFL	135	1810576.835	52.5	0.002630106

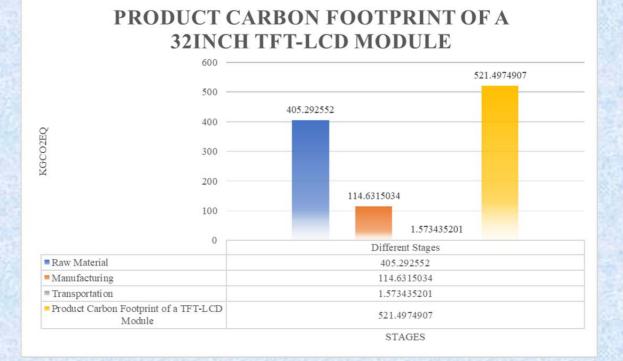
Table 37. Carbon footprint of the TFT-LCD module (Transportation stage) (LT: Land Transportation, ST: Sea Transportation)

Parts	LT: Taiwan (tkm)	ST: Countries (tkm)	LT: China (tkm)	Carbon Footprint Emissions (kgCO ₂ eq)		
Cushion packing	(Location to close)	(Location to close)	(Location to close)	(Location to close)		
Packing carton	45	0	0	0.00297		
Aluminum etch	255	0	0	0.093113955		
EBR	112.5	0	0	0.036057576		
Developer Developer	112.5	0	0	0.016390624		
Stripper	112.5	0	0	0.35938742		
Nitrogen trifluoride	112.5	0	0	0.003937461		
Photo resist	255	0	0	0.03775214		
NMP	(Location to close)	(Location to close)	(Location to close)	(Location to close)		
Oxalic acid	255	0	0	0.008275655		
Nitrous oxide	112.5	0	0	0.583052071		
Oxygen	112.5	0	0	0.035333995		
Argon	112.5	0	0	0.001570165		
Carbon dioxide	112.5	0	0	0.037503474		
Hydrogen	112.5	0	0	0.040735944		
Helium gas	112.5	0	0	0.003481365		
Nitrous oxide	180	0	0	0.001280029		
Ammonia	112.5	0	0	0.002663027		
Chlorine	45	0	0	0.000560269		

Table 37. (Continued)

Table 37. (Continued)

Parts	LT: Taiwan (tkm)	ST: Countries (tkm)	LT: China (tkm)	Carbon Footprint Emissions (kgCO ₂ eq)
Ethanol	(Location to close)	(Location to close)	(Location to close)	(Location to close)
Acetone	255	0	0	0.006217634
Photo resist	255	0	0	0.045695302
Thinner	112.5	0	0	0.015918283
PK-LCG432	(Lack of data)	(Lack of data)	(Lack of data)	(Lack of data)
Soda buffer solution	(Lack of data)	(Lack of data)	(Lack of data)	(Lack of data)
	1.573435201			



6.4.4 Summary

The carbon footprint of different stages (Raw material $\$ Manufacturing $\$ Transportation) are shown in Table 38. If we add the result of each stage, it will be the carbon footprint of a TFT-LCD module (B2B Product), as shown in Figure 5. If this 32inch TFT-LCD module is shipped to the downstream company, the carbon footprint of this 32inch TFT-LCD module is 521.4974907 kg CO₂eq, which can be used for calculation in raw material stage of the final product.

	Raw	Manufacturing	Transportation	SUM
A 32inch	material	Stage	Stage	
TFT-LCD	Stage			
Module	405.292552	114.6315034	1.573435201	521.4974907
A Maria	kgCO ₂ eq	kgCO ₂ eq	kgCO ₂ eq	kgCO ₂ eq

Table 38. Product carbon footprint of the TFT-LCD module

Figure 5. Product carbon footprint of a 32inch TFT-LCD module (B2B)

80

6.5 TV set Calculation (B2C)

When it comes to display industry, there are many final products related to LCD modules such as TVs, smart phones, tablets and so on. In this case study, a TV is selected to be the final product in display industry. In the case of TV manufactory, it is a downstream company that will choose a suitable LCD module to be their necessary component from raw material stage.

6.5.1 TV set - Raw Material Stage

According to BOM data from AUO Corp., carbon footprint of raw material stage (TV set) will be classified into two parts, EE and MM, as shown in Table 39 and Table 40., and the total carbon footprint of a TV set should add the product carbon footprint of a TFT-LCD module, as shown in Table 41.

	Parts	Usage rate per unit of production (kg)	Emission Factor (kgCO2eq/kg)	Usage rate per unit of production (kgCO ₂ eq)
Print State	LIPS board	0.585	89.74	52.5
	Power cord	0.174	19.54	3.4
TV set (EE)	IR board	0.004	203.75	0.815
and the second	Main board	0.236	5.89	1.39
HELETER	Adapter board	0.015	41.00	0.615
1 1 1 2 5 3	Transmitter card	0.01098	41.26	0.453
	Keypad board	0.015	44.93	0.674
	Trumpet	0.36	3.86	1.39
	5	SUM		61.237

Table 39 Carbon	footnrint	of the TV	set- EE	(Raw material stage)
Table 57. Carbon	IUUUpimit	of the I v	SUL- LIL	(Itaw match an stage)

		Parts	Usage rate per unit of production (kg)	Emission Factor (kgCO ₂ eq/kg)	Usage rate per unit of production (kgCO2eq)
	Base	Plastic cover	0.711026	3.87	2.75
	assembl	PE bag	0.025	2.12	0.0529
	y	Rubber	0.010974	241.48	2.65
	Cover	Cover rear plastic	2.68	4.48	12
	rear	Tape anti-noise	0.007	Lack of data	Lack of data
TTY	assembl	Sponge left	0.004	16.25	0.065
TV set	у	Sponge right	0.0085	2.93	0.0249
(MM)	4.00	Rubber	0.0008	2.28	0.00182
	A - 12	Bracket	0.0306	9.48	0.29
		Film protect	0.11	2.53	0.278
	Bezel	Bezel plastic	0.6644	3.87	2.57
	front	Plastic cover_A	0.015	86.00	1.29
	assembl	Plastic cover_B	0.019	27.63	0.525
	у	Tape anti-noise	0.0002	9.50	0.0019
	13-2 CE.	Rubber	0.0008	2.28	0.00182
	1000	Nut	0.0016	5.51	0.00882
14 A.	Others	Neck set	0.36	3.28	1.18

Table 40. Carbon footprint of the TV set- MM (Raw material stage)

		Parts	Usage rate per unit of production (kg)	Emission Factor (kgCO ₂ eq/kg)	Usage rate per unit of production (kgCO2eq)
	ALC: NO	BOX	0.029	33.55	0.973
		Plastic cover_A	0.12	2.48	0.297
		Plastic cover_B	0.085	14.71	1.25
		Fix tape	0.0005	2.28	0.00114
	1	Screw_A	0.0025884	5.06	0.0131
TV set		Screw_B	0.0012942	28.98	0.0375
(MM)	Othong	Screw_C	0.0051768	30.91	0.16
	Others	Screw_D	0.0097065	4.72	0.0458
	4.00	Screw_E	0.0006471	104.93	0.0679
		Screw_F	0.0032355	12.05	0.039
		Cable Assembly_A	0.001428	100.84	0.144
		Cable AssemblyB	0.00861	34.49	0.297
		Cable Assembly_C	0.01537	20.56	0.316
		Bracket	1.87	1.87	3.49
			SUM		33.11116

Table 40. (Continued)

Note. If supply chain companies have done their inventory analysis, the data can be used primarily for calculation. If supply chain companies didn't do the inventory analysis, then the standard database for display industry can be used, as shown in Appendix A.

Parts	kgCO ₂ eq
A 32inch TFT-LCD Module	521.4974907
Raw material for a 32inch TV set - EE and MM	94.34816
SUM	615.8585803

Table 41. Carbon footprint of the TV set (Raw material stage)

6.5.2 TV set - Manufacturing Stage

In this stage, we directly use the result, 27.1 kgCO2eq, which is provided by AUO Corp., as shown in Table 45.

6.5.3 TV set - Transportation Stage

According to the result, $0.297 \text{ kgCO}_2\text{eq}$, which is provided by AUO Corp., the carbon footprint of transportation stage will be used directly, as shown in Table 45.

6.5.4 TV set - Use stage

As for different TV set from different companies, there will be different scenarios for use stage. In this case study, there is a standard scenario for different TV set, as shown in Table 42.

TV use stage standard	On mode (hours/day)	Stand-by mode (hours/day)	Off mode (hours/day)	Use day per year (days/year)	Life time (years)
scenario	4	20	0	365	6.6

In this stage, we assume that this TV set was used in 2009 (Taiwan) and specification of this TV set (S315XW03 V2) according to the data from AUO Corp. is necessary information for carbon footprint calculation for use stage, as shown in Table 43.

Table 43. Specification of the TV set (S315XW03 V2)

TV set (S315XW03 V2)					
On mode power state (W)	76				
Stand-by mode power state (W)	Lack of data				
Off mode power state (W)	1.1				
Electricity emission factor in 2009 (Taiwan)	0.543 kg CO ₂ eq/kwh				

As for use stage calculation for the TV set, the following equation should be used [8].

- (1) On mode power consumption per year (kwh) = On mode power state x Operation time for On mode x Use days per year
- (2) Stand-by mode power consumption per year (kwh) = Stand-by mode power state x Operation time for Stand-by mode x Use days per year
- (3) Off mode power consumption per year (kwh) = Off mode power state x Operation time for Off mode x Use days per year

Total carbon footprint for use stage (kg $CO_2 eq$) = [(1) + (2) + (3)] x life time x local electricity emission factor

Because of lacking data in stand-by mode and zero hour for off mode in standard scenario for use stage, Off mode power state will be substitute with Stand-by mode power state. As the use stage standard calculation mentioned above, the carbon footprint for the TV is shown in Table 44.

Tuble ++ Curbon Toolprint of the T + Set (Ose Stuge)					
Use stage Calculation	On	Stand-by	Off		
Use stage Calculation	mode	mode	mode	Each mode	
Power (W)	76	<u>1.1</u>	1.1	consumption	
hours/day	4	20	0	SUM (kwh)	
Use day per year(days/year)	365				
Consumption(kwh)	110.96	8.03	0	118.99	
Life time (years)	6.6				
Electricity emission factor in	0.543 kg CO ₂ eq/kwh				
Electricity emission factor in 2009 (Taiwan)	(DATA. GOV. TW retrieved from				
2009 (Taiwaii)	https://data.gov.tw/dataset/30151)				
Total carbon footprint for use stage (kgCO ₂ eq)	426.4364				

Table 44. Carbon footprint of the TV set (Use Stage)

6.5.5 TV set - End-of-Life

There are different assumptions of end-of -life scenarios according to different countries. In this stage, we directly use the result, $-9.65 \text{ kgCO}_2\text{eq}$, which is provided from AUO Corp., as shown in Table 45.

6.5.6 Conclusion

At last, add up all the carbon footprint of each stages, the result of this assessment will be the product carbon footprint of a TV set, as shown in Table 45. Most of all, this case study and carbon footprint standard calculation can not only help the supply chain company and primary company care about lower carbon footprint design, but increase the comparability, accuracy of the product carbon footprint.

T V set	Raw Materials Stage	Manufacturin g Stage	Transportatio n Stage	Use Stage	End-of- life Stage	SUM
	615.858580 3 kgCO ₂ eq	27.1 kgCO ₂ eq	0.297 kgCO2eq	426.436 4 kgCO ₂ e q	-9.65 kgCO ₂ e q	1060.04194 2 kgCO ₂ eq

Table 45. Product	carbon footprin	t of the TV set
Table TS, I Touuct	car bon tootprin	t of the f v bet

6.6 Suggestion

There are some problems which we can find from this assessment. First, the BOM data from AUO Corp. lack the information of transportation and location of each supply chain companies, so we can't calculate the carbon footprint of the TV set in transportation stage precisely. In fact, choosing different supply chain companies will change the result in transportation stage of a 32inch TFT-LCD module, and so as in TV set which choose different TFT-LCD modules will change the product carbon footprint of the TV set. On the other hand, the information about greenhouse gas emission of the manufacturing facility, area of input glass, and some other information are from other literature. However, we ignored the manufactory who has module process and Scope 3 emissions because of the lack of data. It is reasonable for this research to ignore those situations. On one hand, the carbon footprint inventory analysis for primary company, as mentioned before, is only obligated to do Scope 1 and Scope 2 emissions because the coverage of Scope 3 is too complicated to calculate carbon footprint emissions and module process usually does not contain much carbon footprint emissions compared to the array and cell process. On the other hand, the calculation of Scope 3 may cause repetitive computation for transportation stage. Therefore, it is easy and simply to ignore those two parts. Second, the carbon footprint of the TV set in the use stage is not accurate because the specification of the TV set is not completed. However, we can compare carbon footprint with different stages, as shown in Figure 6. In this assessment by using this carbon footprint standard, the result of use stage is much lower than the result of raw material stage. Under normal circumstances, we still can find that raw material and use stage have

the highest carbon footprint emissions. To date, the type of backlight unit is almost substitute LED with CCFL in raw material stage and there are many regulations about limited consumption in use stage (On mode < Stand-by mode < Off mode) such as WEEE. Consequently, the carbon footprint in raw material stage of a TFT-LCD module will be different from now, and the product carbon footprint of the TV set in the present use stage will much lower than in 2009. In the future, there are going to be some restrict rules about product design from raw material stage. Third, there are so many end-of-life scenarios about TV sets, we hope that every designer should design their own recycling strategies in order to let carbon footprint calculation of the TV set become more realistic. Finally, there should be another product in the same level for comparison in order to verify this standard.

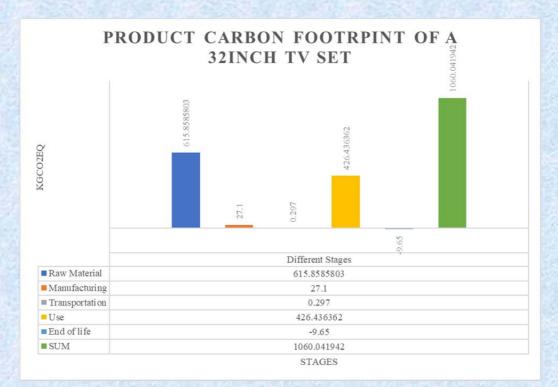


Figure 6. Carbon footprint of a 32inch TV - Different Stages Evaluation

7 Allocation Methods for IT Products (Appendix C)

The following content, feasible allocation methods for supply chain companies, are transferred from Electronic Industry Citizenship Coalition (EICC) [2].

7.1 PCBs

Printed circuit boards (PCBs) are ubiquitous throughout electronic products. Besides, the final component that is present in an end-user device is a printed circuit board assembly (PCBA) that includes the board itself as well as both passive and active electronic mounted components such as integrated circuits, capacitors, transistors, resistors, diodes and so on.

Allocation is performed most typically by **board area** and **layer area** (final board area x number of layers) and there are two feasible ways to allocate carbon footprint impact for PCB:

1. MCF_{PCB} (kg CO₂eq) = [GHG_F/(A_{layer_total})]x(A_{PCB_Board}xL_{PCB})

where

 MCF_{PCB} = the manufacturing carbon footprint of a single PCB in a product (kg CO_2eq)

 GHG_F = the total manufacturing <u>facility</u> greenhouse gas emissions in a year (kgCO₂eq)

 A_{layer_total} = the total area of layers of board produced in the facility for that year (in m^2)

 A_{PCB_Board} = the specific PCB board area for the product being studied (in m²) L_{PCB} = the layers of PCB for the product being studied

2. MCF_{PCB} (kg CO₂eq) = [GHG_{scope1}/(A_{board_total})]x(A_{PCB_Board}) + [GHG_{scope2}/(A_{layer_total})]x(A_{PCB_Board}xL_{PCB}) where

 MCF_{PCB} = the manufacturing carbon footprint of a single PCB in a product (kg CO_2eq)

 GHG_{scope1} = the total Scope 1 manufacturing <u>facility</u> greenhouse gas emissions in a year (kgCO₂eq)

 GHG_{scope2} = the total Scope 2 manufacturing <u>facility</u> greenhouse gas emissions in a year (kgCO₂eq)

 A_{layer_total} = the total area of layers (inner and outer) of board produced in the facility in that year (in m²)

 A_{board_total} = the total area of board produced in the facility in that year (in m²) A_{PCB_Board} = the specific PCB board area for the product being studied (in m²) L_{PCB} = the layers of PCB for the product being studied

7.2 PCBA

Contract manufacturing facilities often perform the activity of taking a bare circuit board and the components of an ICT product, mounting the components to the board, permanently securing the components with solder and/or adhesive, possibly singulating panels of products into finished items, and testing the products in one or more ways. Assembly and test describe the two major manufacturing steps that transform many parts into one conjoined assembly ready for use. The final product of the assembly process is known as"printed circuit assembly"(PCA), or a"printed circuit board assembly"(PCBA).

There are three feasible ways to allocate carbon footprint impact of PCBA:

1. $MCF_{A\&T}$ (kg CO₂eq) = $W_{PCBA}x(GHG_F/W_{tot_PCBA})$

where

 $MCF_{A\&T}$ = the assembly and test carbon footprint of a specific product (kg CO₂eq) GHG_F = the total manufacturing <u>facility</u> greenhouse gas emissions in a year (kg CO₂eq)

 W_{PCBA} = the weight of the specific PCBA that emissions are being determined for (kg) W_{tot_PCBA} = aggregate **PCBA** weight of all products manufactured in a reported year (kg)

2. $MCF_{A\&T}$ (kg CO2e) = ($W_{FA}x(GHG_F/W_{tot})$)/PCT_{elec}

where

 $MCF_{A\&T}$ = the assembly and test carbon footprint of a specific product (kg CO₂eq) GHG_F = the total manufacturing <u>facility</u> greenhouse gas emissions in a year (kg CO₂eq)

 W_{FA} = the **completed** weight of the specific product (kg)

 W_{tot} = aggregate **completed** weight of all products manufactured in reported year (kg) PCT_{elec} = an average percentage of the weight of the electronics only to the total weight of the shipped product

3. $MCF_{A\&T}$ (kg CO₂eq) = (GHG_F/N_{tot_PCBA}) where

 $MCF_{A\&T}$ = the assembly and test carbon footprint of a specific product (kg CO₂eq)

 GHG_F = total facility greenhouse gas emissions in a year (kgCO₂eq)

 $N_{tot_{PCBA}}$ = aggregate count of all **PCBA**s manufactured in reported year (kg)

7.3 ICs

Integrated Circuits (ICs) are ubiquitous throughout electronic products. They range quite dramatically in complexity, package type, area and stacking within the die.

There are two feasible ways to allocate carbon footprint impact of ICs:

1. $MCF_{IC}(kg CO_2 eq) = [GHG_F/(A_{output})]x(A_{IC})$

where

 MCF_{IC} = the manufacturing carbon footprint of a single IC - cradle to gate (kg CO₂eq) GHG_F = the total manufacturing <u>facility</u> greenhouse gas emissions in a year (kg CO₂eq)

 A_{output} = the total good wafer out (in cm²) A_{IC} = the total area of a specific IC (in cm²)

2. MCF_{IC} (kg CO₂eq) =[GHG_F/(A_{output}xML_{fab})]x(A_{IC}xML_{IC})

where

 MCF_{IC} = the manufacturing carbon footprint of a single IC - cradle to gate (kg CO₂eq) GHG_F = the total manufacturing <u>facility</u> greenhouse gas emissions in a year (kg CO₂eq)

 A_{output} = the total good wafer out (in cm²)

 ML_{fab} = number of mask layers for that facility

 ML_{IC} = number of mask layers for the specific IC

 A_{IC} = the total area of a specific IC (in cm²)